One-part alkali-activated blast furnace slag for sustainable construction at subzero temperatures

Highlights

  • OP cement and one-part alkali-activated blast furnace slag (AAS) mortars were compared.
  • Effects of subzero temperatures on hardened-state properties were determined.
  • One-part AAS mortar gained a higher compressive strength.
  • Compressive strength retrieval in AAS mortar after converting it to room temperature.
  • Construction season in cold areas could be extended by using one-part AAS materials.

Abstract

The construction season is limited in northern countries due to the severe cold weather conditions and their detrimental impacts on concrete quality. Thus, there are excessive expenses required annually for insulation and energy-intensive heating systems for cold-weather concreting. This experimental study aimed to investigate the potential of using high-strength one-part alkali-activated blast furnace slag (AAS) in cold weather without the need for supplementary heating systems. Therefore, the impacts of different subzero curing temperatures on the hardened properties of one-part AAS mortar in comparison with cement mortar were assessed. After casting, mortars were immediately cured at a temperature of 23, −5, −10, and −20 °C, up to 56d. The results showed that the lower the curing temperature, the lower the UPV and compressive strength of cement and one-part AAS mortar; however when the curing period was fixed, one-part AAS mortar registered higher UPV and compressive strength than cement mortar at all curing temperatures. Owing to additional room temperature curing, the hardened properties of AAS mortar were significantly improved. The findings were further supported by microstructural and thermogravimetric analyses.

Related Press Coverage

SmartRock® is #1
and we can prove it!

Experience the world’s #1 concrete sensor.

Get Real-Time Data with SmartRock®

See how it works today

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.