iCOR® 

Wireless NDT Corrosion Detection

Monitor & measure the rate of rebar corrosion in seconds

FlyerIcons_LightGreen-11

Non-Invasive & Non-Destructive Wireless Technology 

Unlike other devices which must drill into the concrete and physically connect to the rebar to evaluate corrosion, the iCOR® is completely non-destructive.

Light green icon of a man running fast

Fast & Accurate Real-Time
Data in Seconds 

Data is collected, analyzed, and stored wirelessly within the mobile app on the tablet provided where it can be easily shared with team members.

Light green light bulb icon

Automatic Report Generation Simple & Easy-To-Use 

Detailed corrosion evaluation of reinforced concrete structures is presented as contour maps which are accessible in real-time on the tablet.

Giatec iCOR, Recipient of NACE Corrosion Innovation Award

Recipient of NACE Corrosion Innovation Award

iCOR is the most advanced wireless corrosion measurement device for evaluating the health of reinforced concrete structures. iCOR detects corrosion potential, corrosion rate, and in-situ electrical resistivity. In 2019, the iCOR was presented the Corrosion Innovation Award by the National Association of Corrosion Engineers (NACE).

Applications​

  • Detection of corrosion in reinforcement
  • Measurement of rebar corrosion rate
  • Evaluation of corrosion potential of rebar
  • Measurement of in-situ electrical resistivity
  • Assessment of concrete durability
  • Rehabilitation and repair of concrete structures
iCOR app on a tablet

Software

  • Real-time contour mapping of corrosion rate, electrical resistivity, and corrosion potential
  • Accurate non-subjective algorithm-based interpretations
  • Multiple and directional parameters tested in a single measurement
  • Easy reporting and data exporting

Hardware

  • Non-destructive, and non-invasive wireless technology
  • Measurements obtained and evaluated within seconds
  • Simple and easy-to-use with minimal training required
  • Single-person operation device
  • Tablet included with free Android app
  • Award-winning patented technology
Giatec iCOR device

ASTM C876 – Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete

Patented Technology

iCOR benefits from the patented CEPRA technology that makes it possible to estimate the rate of rebar corrosion through a noninvasive, non-destructive approach. This means that the need to connect the device to the rebar to obtain measurements, which is the case for other commercial devices, is eliminated with the iCOR.

Testing Time   3 to 30 seconds  
Corrosion Rate Range   0 to 500 μm / year  
Corrosion Potential Range   -800 to +200 mV / CSE  
Electrical Resistivity Range   0 to 10,000 Ω • m 

Additional resources on concrete corrosion:

  1. Alonso, C., Andrade, C., and Gonzalez, J. A. (1988). Relation between Resistivity and Corrosion Rate of Reinforcements in Carbonated Mortar Made with Several Cement Types. Cem. Concr. Res., 18(5), 687-698. 
  2. Andrade, C., and Gonzalez J. A. (1978). Quantitative Measurements of Corrosion Rate of Reinforcing Steels Embedded in Concrete Using Polarization Measurements. Werkst. Korros., 29(8), 515-519. 
  3. Andrade, C., & Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315-328. 
  4. Andrade, C., & Alonso, C. (2001). On-site measurements of corrosion rate of reinforcements. Construction and Building Materials, 15(2-3), 141-145. 
  5. Andrade, C., Castelo, V., Alonso, C., & Gonzalez, J. (1984). The Determination of the Corrosion Rate of Steel Embedded in Concrete by the Polarization Resistance and AC Impedance Methods. Corrosion Effect of Stray Currents and the Techniques for Evaluating Corrosion of Rebars in Concrete, 43-63. 
  6. Andrade, C., & González, J. A. (1978). Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Werkstoffe Und Korrosion, 29, 515-519. 
  7. Arup, H. (1983). The Mechanisms of the Protection of Steel by Concrete. Society of Chemical Industry, , 151-157. 
  8. ASTM C876-91(1999). Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete. 
  9. ASTM G1-90 (1999). (2002). Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens. 
  10. Balabanic, G., Bicanic, N., and Durekovic, A. (1995). Numerical Analysis of Corrosion Cell in Concrete. Int. J. Eng. Modell., 8(1-2), 1-5. 
  11. Bastidas, D. M., González, J. A., Feliu, S., Cobo, A., & Miranda, J. M.  (2007). A Quantitative Study of Concrete-Embedded Steel Corrosion Using Potentiostatic Pulses. System, 7, 10. 
  12. Berke, N. S., Shen, D. F., & Sundberg, K. M. (1990). Comparison of Current Interruption and Electrochemical Impedance Techniques in the Determination of Corrosion Rates of Steel in Concrete. The Measurement and Correction of Electrolyte Resistance in Electrochemical Tests. 
  13. Berke, N. S., Shen, D. F., & Sundberg, K. M. (1990). Comparison of the Polarization Resistance Technique to the Macrocell Corrosion Technique. Corrosion Rates of Steel in Concrete, , 38-51. 
  14. Berkeley, K. G. C., and Pathmanaban, S. (1990). Cathodic Protection of Reinforcement Steel in Concrete, Butterworth-Heinemann, London. 
  15. Bertolini, L., Elsener, B., Pedeferri, P., and Polder, R. (2004). Corrosion of Steel in Concrete, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. 
  16. Bohni, H. (2005). Corrosion in Reinforced Concrete Structures, CRC Press, New York. 
  17. Broomfield, J. P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair Sponpress. 
  18. Browne, R. D., Geoghegan, M. P., & Baker, A. F. (1983). Analysis of Structural Condition from Durability Results. Corrosion of Reinforcement in Concrete Construction.Chichester: Ellis Horwood, , 193-222. 
  19. Cady, P. D., & Gannon, E. J. (1992). Condition Evaluation of Concrete Bridges Relative to Reinforcement Corrosion. Volume 8: Procedure Manual. 
  20. Cleland, D. J., Yeoh, K. M., & Long, A. E. (1997). Corrosion of reinforcement in concrete repair. Construction and Building Materials, 11, 233-238. 
  21. Cox, R. N., Cigna, R., Vennesland, Ø, & Valente, T. (1997). COST 509: Final report Corrosion and protection of metals in contact with concrete. 
  22. Elsener, B. (2001). Half-cell potential mapping to assess repair work on RC structures. Construction and Building Materials, 15(2-3), 133-139. 
  23. Elsener, B. (2002). Macrocell corrosion of steel in concrete–implications for corrosion monitoring. Cement and Concrete Composites, 24(1), 65-72. 
  24. Elsener, B. (2005). Corrosion rate of steel in concrete—Measurements beyond the Tafel law. Corrosion Science, 47(12), 3019-3033. 
  25. Elsener, B., Andrade, C., Gulikers, J., Polder, R., & Raupach, M. (2003). Hall-cell potential measurements—Potential mapping on reinforced concrete structures. Materials and Structures, 36(7), 461-471. 
  26. Elsener, B., & Bohni, H. (1988). Potential Mapping and Corrosion of Steel in Concrete. Corrosion Rates of Steel in Concrete, , 143-156. 
  27. Elsener, B., & Böhni, H. (1995). Condition evaluation of reinforced concrete bridges–The benefits of potential mapping. Proc. 6 thInt. Conf. Structural Faults Repair, London, 47-52. 
  28. Elsener, B., Muller, S., Suter, M., & Bohnl, H. (1990). Corrosion Monitoring of Steel in Concrete–Theory and Practice. Corrosion of Reinforcement in Concrete, , 348-357. 
  29. Elsener, B., Wojtas, H., & Boehni, H. (1994). Galvanostatic Pulse Measurements—Rapid On-Site Corrosion Monitoring. Corrosion and Corrosion Protection of Steel in Concrete, 1, 236-246. 
  30. Feliu, S., Andrade, C., González, J. A., & Alonso, C. (1996). A new method for in-situ measurement of electrical resistivity of reinforced concrete. Materials and Structures, 29(6), 362-365. 
  31. Feliu, S., Gonzalez, J. A., & Andrade, C. (1996). Electrochemical methods for on-site determinations of corrosion rates of rebars. Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures, 
  32. Feliu,S., Gonzalez, J.A., Escudero, M. L., & Andrade, M. C. (1990). Possibilities of the guard ring for electrical signal confinement in the polarization measurements on reinforcements. Corrosion (Houston, TX.), 46(12), 1015-1020. 
  33. Feliu, S., Gonzalez, J. A., feliu Jr., S., & Andrade, M. C. (1990). Confinement of the Electrical Signal for in Situ Measurement of Polarization Resistance in Reinforced Concrete. ACI Materials Journal, 87(5). 
  34. Flis, J., Sabol, S., Pickering, H. W., Sehgal, A., Osseo-Asare, K., & Cady, P. D. (1993). Electrochemical measurements on concrete bridges for evaluation of reinforcement corrosion rates. Corrosion-Houston TX, 49, 601-601. 
  35. Garcés, P., Andrade, M. C., Saez, A., & Alonso, M. C. (2005). Corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments in the micropores of concrete in the propagation period. Corrosion Science, 47(2), 289-306. 
  36. Ge, J., and Isgor, O. B. (2006). On the Numerical Solution of Laplace’s Equation with Nonlinear Boundary Conditions for Corrosion of Steel in Concrete. ISCCBE Conference (CD-Rom), Montreal, Canada. 
  37. Ge, J., and Isgor, O. B. (2007). Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete. Materials and Corrosion(1995), 58(8), 573-582. 
  38. Geenen, F. M. (1991). Characterization of Organic Coatings With Impedance Measurements. Doctoral Dissertation, Delft University of Technology, 
  39. Ghods, P., Isgor, O. B., and Pour-Ghaz, M. (2007). A Practical Method for Calculating the Corrosion Rate of Uniformly Depassivated Reinforcing Bars in Concrete. Mater. Corros., 58(4), 265-272. 
  40. Ghods, P., Isgor, O. B., & McRae, G. (2009)The Effect of Concrete Pore Solution Composition on the Quality of Oxide Films on Black Steel Reinforcement. Cement and Concrete Composites, 31(1), 2-11. 
  41. GjØrv, O. E., Vennesland, Ø., and El-Busiady, A. H. S. (1977). Electrical Resistivity of Concrete in the Oceans. Proc., 9th Annual Offshore Technology Conference, Houston, Texas, 581-588. 
  42. González, J. A., Cobo, A., González, M. N., & Feliu, S. (2001). On-site determination of corrosion rate in reinforced concrete structures by use of galvanostatic pulses. Corrosion Science, 43(4), 611-625. 
  43. Gowers, K. R., & Millard, S. G. (1999). Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique. ACI Materials Journal, 96(5) 
  44. Gowers, K. R., Millard, S. G., Gill, J. S. and Gill, R. P. (1994). programmable Linear Polarization Meter for Determination of Corrosion Rate of Reinforcement in Concrete Structures. Br. Corros. J., 29(1), 25-32. 
  45. Gu, P., & Beaudoin, J. J. (1998). Obtaining Effective Half-Cell Potential Measurements in Reinforced Concrete Structures. Institute for Research in Construction: Construction Technology Update, 18(4) 
  46. Gulikers, J. (2005). Theoretical Considerations on the Supposed Linear Relationship between Concrete Resistivity and Corrosion Rate of Steel Reinforcement. Mater. Corros., 56(6), 393-403. 
  47. Isgor, O. B., and Razaqpur, A. G. (2004). Finite Element Modeling of Coupled Heat Transfer, Moisture Transport and Carbonation Processes in Concrete Structures. Cem. Concr. Compos., 26(1), 57-73. 
  48. Jackson, P. D. (1981). Focussed electrical resistivity arrays: some theoretical and practical experiments. Geophysical Prospecting, 29(4), 601-626. 
  49. John, D. G. (1981). Use of AC impedance technique in studies on steel in concrete in immersed conditions. British Corrosion Journal, 16(2) 
  50. Jones, D. A. (1996). Principles and Prevention of Corrosion (ed.). 
  51. Kranc, S. C., & Sagüés, A. A. (1993). Computation of Reinforcing Steel Corrosion Distribution in Concrete Marine Bridge Substructures. Corrosion National Association of Corrosion Engineers Annual Conference. 
  52. Kranc, S. C., and Sagues, A. A. (1994). Computation of Reinforcing Steel Corrosion Distribution in Concrete Marine Bridge Substructures. Corrosion, 50(1), 50-61. 
  53. Langford, P., & Broomfield, J. P. (1987). Monitoring the corrosion of reinforcing steel. Construction Repair, 1(2), 32-36. 
  54. Law, D. W., Millard, S. G., & Bungey, J. H. (2000). Linear polarisation resistance measurements using a potentiostatically controlled guard ring. NDT & E International, 33(1), 15-21. 
  55. Li, D., Flis, J., Sehgal, A., Kho, Y. T., & Saboi, S. (1992). Condition Evaluation of Concrete Bridges Relative to Reinforcement Corrosion. Volume 2. Method for Measuring the Corrosion Rate of Reinforcing Steel. 
  56. Luping, T. (2002). Calibration of the Electrochemical Methods for the Corrosion Rate Measurement of Steel in Concrete NORDTEST Project No. 1531-01. SP RAPPORT-STATENS PROVNINGSANSTAL. 
  57. Martinez, I., Andrade, C., Rebolledo, N., Bouteiller, V., Marie-Victoire, E., & Olivier, G. (2008). Corrosion Characterization of Reinforced Concrete Slabs with Different Devices. Corrosion-Houston TX, 64(2), 107. 
  58. Matsuoka, K., Kihira, H., Ito, S., & Murata, T. (1988). Corrosion Monitoring for Reinforcing Bars in Concrete. Corrosion Rates of Steel in Concrete, , 103-117. 
  59. Millard, S. G., & Gowers, K. R. (1992). Resistivity assessment of in-situ concrete: the influence of conductive and resistive surface layers. Structures and Buildings, 94(4), 389-396. 
  60. Millard, S. G., Law, D., Bungey, J. H., & Cairns, J. (2001). Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete. NDT & E International, 34(6), 409-417. 
  61. Morris, W., Moreno, E. I., & Sagues, A. A. (1996). Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe. Cement and Concrete Research, 26(12), 1779-1787. 
  62. Munn, R. S., and Devereux, O. F. (1991). Numerical Modeling and Solution of Galvanic Corrosion Systems. Part I. Governing Differential Equation and Electrodic Boundary Conditions. Corrosion, 47(8), 612-618. 
  63. Newman, J. (1966). Resistance for Flow of Current to a Disk. Journal of the Electrochemical Society, 113, 501. 
  64. Newton, C. J., & Sykes, j. M. (1988). A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corrosion Science, 28(11), 1051-1074. 
  65. Oelssner, W., Berthold, F., & Guth, U. (2006). The iR drop-: well-known but often underestimated in electrochemical polarization measurements and corrosion testing. Materials and Corrosion (1995), 57(6), 455-466. 
  66. Polder, R. B. (2001). Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Construction and Building Materials, 15(2-3), 125-131. 
  67. Pruckner, F., & Gjrv, O. E. (2002). Patch repair and macrocell activity in concrete structures. ACI Materials Journal, 99, 143-148. 
  68. Ramniceanu, A. (2004). Correlation of Corrosion Measurements and Bridge Conditions with NBIS Deck Rating. M.Sc. Thesis, 
  69. Redaelli, E., Bertolini, L., Peelen, W., and Polder, R. (2006). FEM-models for the Propagation Period of Chloride Induced Reinforcement Corrosion. Mater Corros., 57(8), 628-635. 
  70. Revie, R. W., & Uhlig, H. H. (2008). Corrosion and Corrosion Control Wiley-Interscience. 
  71. RILEM TC 154-EMC. (2003). Half-cell Potential Measurements – Potential Mapping on Reinforced Concrete Structures. Mater. Struct., 36(7), 461-471. 
  72. Sagues, A. A., and Kranc, S. C. (1992). On the Determination of Polarization Diagrams of Reinforcing Steel in Concrete. Corrosion, 48(8), 624-633. 
  73. Sehgal, A., Kho, Y. T., Osseo-Asare, K., & Pickering, H. W. (1992). Comparison of corrosion rate-measuring devices for determining corrosion rate of steel-in-concrete systems. Corrosion- Houston TX, 48, 871-871. 
  74. Sehgal, A., Li, D., Kho, Y. T., Osseo-Asare, K., & Pickering, H. W. (1992). Reproducibility of Polarization Resistance Measurements in Steel-in-Concrete Systems. Corrosion- Houston TX, 48, 706-706. 
  75. Stern, M., & Geary, A. L. (1957). Electrochemical Polarization, LA theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society, 104, 56-63. 
  76. Stratfull, R. (1957). The corrosion of steel in a reinforced concrete bridge. Corrosion, 13(3), 173-179. 
  77. Uhlig, H. H., and Revie, R. W. (1985). Corrosion and Corrosion Control, 3rd Ed., John Wiley & Sons, New York. 
  78. Videm, K., & Myrdal, R. (1997). Electrochemical Behavior of Steel in Concrete and Evaluation of the Corrosion Rate. Corrosion- Houston TX, 53, 734-742. 
  79. Virmani, P. (2002). Corrosion Costs and Preventive Strategies in the United States. Publication no.FHWA-RD-01-156 (Washington, DC: FWHA, 2002), 
  80. Warkus, J., Brem, M., and Raupach, M. (2006). BEM-models for the Propagation Period of Chloride Induced Reinforcement Corrosion. Mater. Corros., 57(8), 636-641. 
  81. Zhang, J., & Mailvaganam, N. P. (2006). Corrosion characteristics and key electrochemical factors in patch repair. Canadian Journal of Civil Engineering, 33(6), 785-793. 

Is the iCOR compliant with ASTM standards? 

There is no standard available yet for the corrosion rate measurement based on the patented CEPRA technique. Giatec iCOR is the only product on the market that does not require the connection to the reinforcement to obtain corrosion rate. In addition to corrosion rate and resistivity, the iCOR also provides a standard half-cell measurement unit for corrosion potential measurement; the half-cell measurement is optional as it requires connection to the reinforcement. The standard for corrosion potential measurement of rebar in concrete is ASTM C876. 

How does concrete cover thickness affect the readings? 

The user needs to input the cover thickness in the software for corrosion rate measurement. The range of cover thickness can vary from 0.4 to 3.5 in (1 cm to 9 cm) with an increment of 0.4 in (1 cm). 

How does the moisture of concrete affect the iCOR results? 

iCOR measurements are sensitive to the concrete moisture. The dryer the concrete is, the higher the electrical resistivity values, the lower the corrosion rate and more positive the corrosion potential will be. Pre-wetting the concrete surface is required before the use of any corrosion measurement. In the case of iCOR, a wet connection between the electrodes and surface of concrete through sponges is required to obtain reliable measurements. 

What kind of electrode is used in the iCOR for corrosion potential measurement? 

The iCOR uses a solid-base Ag/AgCl electrode for the half-cell measurement. This is a maintenance- free electrode capable of doing upside down measurement and less prone to contamination due to chlorides. Ag/AgCl has a fixed potential offset compared to the Cu/CuSO4 electrode; the iCOR software accounts for this difference and presents the results in mV/CSE (i.e. Cu/CuSO4 Electrode) as per the ASTM C876. 

Can I do a measurement on epoxy coated rebar? 

The iCOR applies an electrical current between the two outer electrodes; any non-conductive layer will cause interruption in the flow of current into concrete. If the epoxy on the bar is perfectly intact, no measurement would be possible. 

Part No.ItemDescription
900081iCOR Beta unit, Tablet with hands-free carrying support, Data Analysis App., User manual, Connection sponges, USB cable, Conductive solution, Carrying Case.

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.