International Concrete Abstracts Portal

Title: Numerical Simulation of Internal Relative Humidity of Concrete Exposed to Drying

Author(s): Sarah De Carufel, Andrew Fahim, Pouria Ghods, and Rouhollah Aalizadeh

Publication: Materials Journal

Volume: 117

Issue: 6

Appears on pages(s): 101-110

Keywords: ASTM F2170; concrete drying; concrete relative humidity; finite element modeling; moisture transport; permeability; pore size distribution; resilient flooring

Date: 11/1/2020

Abstract:
This paper presents a model developed to predict the internal relative humidity (RH) of concrete during drying. The model makes use of simplified inputs, including the concrete mixture design and the cement Bogue composition, thus making it accessible to engineers and practitioners. These inputs are used to separately determine the permeability of both liquid and vapor phases, hence solving for moisture transport through an empirical derivation of the (de) sorption isotherm, total porosity, and pore tortuosity. The model is validated using previously published literature data as well as experiments designed specifically for model validation. The model was found successful in predicting RH profiles for the validation data with the simple inputs required. However, it was found that in cases where the standardized ASTM F2170 method is used to measure RH, the agreement between the model and experimental data decreases. This was found to be related to errors associated with performing humidity measurements within cavities drilled in concrete. Such errors are discussed, and room for improvement in in-place humidity measurements is proposed. Finally, the model is used to validate the use of RH measurements at a specific concrete depth to evaluate the susceptibility of moisture-sensitive flooring to failures.

Related Articles

Giatec Reduces Sensor Calibration Time with Automatic Concrete Mix Detection: The SmartRock Pro Self-Calibrating Sensor

From weather conditions, scheduling issues, or even last-minute changes to your mix order and delivery, since you never know what changes will come your way on the concrete construction site Giatec wanted to update their SmartRock maturity sensor to provide concrete contractors savings. SmartRock Pro is designed to take all fluctuations in stride by self-calibrating to cut costs, save time, and fight construction waste from break tests.   SmartRock® Pro Launch is Here! Watch this video on YouTube Access the full article here.

Optimizing the Planning of Your Mass Concrete Pour with Thermal Modeling, a Feature of the Giatec 360 Platform

Giatec’s Thermal Modeling feature on the Giatec 360 platform was developed to help predict the maximum concrete temperature and temperature differential of mass concrete. Thermal Modeling is a comprehensive solution for engineers, general contractors, and ready-mix producers. The feature allows users with mass concrete elements to experiment with different inputs and produce forecast scenarios outlining the anticipated behavior of the concrete temperature at various depths. User-friendly and intuitive, it was built with customers in mind and intended to work independently of SmartRock sensors. Thermal Modeling requires…

Giatec Scientific Raises $5M in Funding from BDC Capital’s Cleantech Practice

Giatec Scientific Inc., an Ottawa, Canada-based cleantech company, raised $5M in funding. BDC Capital’s Cleantech Practice made the investment. The company intends to use the funds for its expansion into international markets and innovation in CO2-reducing technology, moving the concrete industry toward carbon neutrality. To access the full article, click here.

Claim Your Free Demo Kit

Get Your First SmartRock Concrete Sensor for FREE

Get Real-Time Data with SmartRock®

See how it works today

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.