Sydney Metro Job Structural Failure Leads to Delays

Australia is currently working on a large-scale infrastructure project known as the Sydney Metre Job. Unfortunately, a key component of Australia’s biggest public transport infrastructure project has recently been the subject to a critical technical report that describes an elevated viaduct span fail located at a stitch joint between two precast segments. The fail took place in September of last year and has led to serious setbacks for the job.

The affected section, also known as the Skytrain section, is one of the 115 spans under construction using this precast segmental span-by-span method. The method calls for erecting a series of precast box girder segments that are supported by an overhead gantry, which are then stressed longitudinally.

It was last November when engineering consultant Aurecon Australasia released the results of their independent investigation for Transport for NSW. In the report, combinations of errors were highlighted that were believed to have contributed to the failure of Span 60. These results have led to new controls being introduced as a means to improve the construction process, according to TfNSW.

The noted failure occurred in a stitch joint that was used to join two segments at the midpoint of Span 60. Departing from normal practice, a closure concrete pour was used at this location. Usual practice, on the other hand, would be match-cast segmental construction, where each segment is cast against its neighbouring segment as a means of achieving a matching interface. The latter practice was deemed not possible on Span 60 between segments 5 and 6, due to the fact that the original number 5 segment was been used for another part of the project.

The report indicates that a compression failure of the bottom flange of the box girder occurred in the closure pour approximately 33 hours after the final stressing of the tendons. This failure then caused a hinge point to form in the middle of the span. This caused the girder to be lifted about 700 millimetres from its original position. The northern end of the girder then slid forward and the top flange of the southern end clashed with the Span 59 box girder.

Aurecon claims that the damage was due to insufficient temporary clamping pressure during the stitch-joint construction process. As the structures cooled at night, the segments essentially pulled apart which led to cracking of the stitch-joint. Using concrete with insufficient strength and using exposed resin to attempt to fix the cracking only made the problem worse.

Following the reports’ recommendations, TfNSW plan on making a number of changes in their construction processes. These newly implemented procedures will include increased clamping and longer concrete curing times to ensure that the strength of the concrete is more than sufficient.

Get the full report here

Source: Structural Failure of Precast-Concrete Span Sets Back Sydney Metro Job

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Articles

Differentiating Inert and Reactive Pozzolanic Materials using Bulk Resistivity

Research Background  Portland cement is often replaced by supplementary cementitious materials (SCMs) in concrete to increase sustainability (reducing CO2 emissions due to lower cement contents) and durability (mitigation of alkali-silica reaction, reduced sulfate attack, and reduced chloride penetration). Fly ash and natural pozzolans are specified using ASTM C618/AASHTO M295, and an important part of this specification is the strength activity index test (SAI), which dictates that a mortar mixture with 20% SCM replacement should reach at least 75% strength of the control mixture at either 7- or 28-days. The SAI is a potentially flawed test as inert materials are known to be able to pass the test. The early testing age, low SCM replacement…

Roxi press release

Giatec’s Pioneering AI Programs for Sustainable Concrete Testing and Reducing CO2 Emissions

In late 2020, Giatec announced that our artificial intelligence (AI) program RoxiTM has been trained with the funding provided by Sustainable Development Technology Canada (SDTC), which will help in the reduction of cement usage during concrete testing. For those that are unfamiliar with Roxi’s functions, require deeper insights into how and why this funding came about, or are curious about the approach Giatec takes towards AI in the concrete industry, we encourage you to dive right into this blog post. Make sure to check out other linked resources throughout the article…

Concrete strength monitoring with thermocouples

Choosing the Right Concrete Thermocouple for Your Jobsite

What Is a Concrete Thermocouple?  In layman’s terms, a thermocouple is an electric device that measures temperature, essentially making it a type of thermometer. That being said, it is not the kind of thermometer you would use to measure your body temperature when running a fever, or to deduce what the atmospheric weather is today, or as an in-built mechanism within your refrigerators and heaters. So, what exactly sets a concrete thermometer apart?  It takes two metals to form a thermocouple, both of which are wires that are welded, crimped, or twisted together, and It takes two metals to form a thermocouple, both of which are…

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.