Road Salt Meets its Match With a New Type of Concrete

More Durable Concrete That Doesn’t React to Salt

It has been a known fact for engineers that road salt, used as a de-icing agent every winter to protect the roads from the dangerous build-up of ice, are also responsible for the slow degradation of the concrete to which these roads are made of. Each winter where temperature fluctuations facilitate the build-up of ice due to the cycle of snowing, melting and freezing, roads are constantly being layered with calcium chloride salt.

SmartRock™ Plus Sensor
*For eligible new customers only

Get a Free Trial Kit

  • Free Sensor*
  • Free Shipping
  • No Strings

The issue lies in the fact that calcium chloride reacts with what is known as calcium hydrate – an ingredient found in concrete, and creates by product compound called calcium oxychloride. This chemical has the tendency to expand as it forms and so when this happens in the pore of concrete it can easily lead to degradation and cracking.

As a means of counteracting this reaction, Dr. Yaghoob Farnam of Drexel’s College of Engineering has been working on a new recipe for concrete that can hold its own against the chemical reaction. The goal is to find a concrete mix recipe that is just as strong and durable as those that typically pave the roads, but that also contains less calcium hydroxide. Farnam, who is also the director of the Advanced and Sustainable Infrastructure Materials research Group, recently created a method which uses leftovers from coal furnaces – fly ash, slag and silica fume – in a more durable concrete mix that doesn’t react to salt. His findings have recently been published in the journal of Cement and Concrete Composites.

Farnam’s study revealed that his concrete mix samples did not produce as much calcium chloride and that it did not show damage during the testing period compared to Portland cement samples which showed damage after just eight days. “This research proves that by using alternate cementitious materials to make concrete, they can avoid the destructive chemical reaction and continue to use calcium chloride,” Farnam states.

Source: http://drexel.edu/now/archive/2017/May/new-cement-recipe-stops-road-salt-degradation/

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Articles

giatec award for best paper

Giatec Award for Best Paper

We are very excited to announce the launch of our annual research paper contest! This is a great opportunity for civil-engineers to expose their research and development to a global audience of industry experts. Plus, the…

Schematic representation of service-life stages for structures exposed to chloride-induced corrosion risk

Analyzing Corrosion in Reinforced Concrete Structures

Reinforced concrete structures have shaped our cities for thousands of years, from historical buildings stretching as far back as the Romans to present day, such as the 3-storey parking garage adjacent to the mega shopping mall…

Concrete Robot

Concrete-Eating Robots – The Future of Recycling Old Buildings

The process of demolishing a building involves heavy machinery to crush concrete and separate valuable materials that can be reused. Current methods consume quite a significant amount of time and money in order to safely disassemble the building, extract parts, and transport the materials to off-site centers…

rcon

Why Measure Concrete Resistivity?

Concrete is a porous material which contains microscopic voids known as pores. These pores range in size, vary in connectivity (pore structure) and can be added to the concrete via air-entraining admixtures. The water-to-cementitious material and…

completed road

Open Roads Sooner with Concrete Curing Sensors

Road construction can be a lengthy, disruptive process—so ensuring that your project stays on schedule is one of your most important responsibilities as a project manager. *For eligible new customers only Get a Free Trial Kit…

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.