A Look at Discrepancies in Concrete Strength Testing

As a general contractor or subcontractor working on a concrete structure, one of the most important tasks is ensuring that the concrete has been properly cured and its quality has been tested according to applicable standards. This is of the utmost importance for quality control and quality assurance purposes. Equally important is selecting an appropriate and accurate method for monitoring the strength of in-place concrete. Unfortunately, popular methods of testing concrete quality, especially compressive strength, are frequently subject to discrepancies.

Cylinder Break Tests

If the project is anything like most other concrete construction sites, break tests are likely used to monitor the strength of newly placed concrete. This practice has remained mostly unchanged since the early 19th century. There are two types of specimens that field technicians collect to test the strength of concrete: standard-cured cylinders and field-cured cylinders. These samples are cast and cured according to ASTM C31, Standard Practice for Making and Curing Concrete Test Specimens in the Field, and are tested for compressive strength, most often by a third-party testing laboratory.

As the name suggests, field-cured cylinders are subject to the same temperature and relative humidity conditions that the completed structure will experience in its environment. Unlike standard-cured cylinders, field-cured specimens are kept right beside the concrete slabs on site. They are predominantly used for determining whether a structure is ready for critical operations like removing formwork or post-tensioning.

In standard or lab curing, concrete cylinders are sent to the lab where they are stored in curing tanks or rooms which are subjected to curing conditions outlined in the ASTM standard and the project’s specifications. Standard-cured cylinders are generally tested 28 days after the concrete is placed for quality control and standard acceptance purposes.

Although cylinder break tests are the most widely accepted method of compressive strength testing, they are frequently associated with testing discrepancies that are not often genuinely representative of in-situ concrete elements. Curing conditions, the surface area of the cylinders compared to the onsite concrete element, and transportation to the laboratory of field-cured specimens are all factors that can skew the setting, hardening, and strength performance of the samples in comparison to the actual structural elements made from the same concrete material.

Standard-Cured Cylinders

Even though the process of testing cylinders is fully standardized, there has been a considerable amount of “bad” or low breaks recorded when standard specifications are not properly followed on site. The American Concrete Institute’s (ACI) pertinent specifications (ACI 318-14, 301-16, and 311.6-09) state that acceptance test specimens need to be standard-cured in accordance with ASTM C31. After the cylinders are molded, ambient temperature and humidity are to be monitored and maintained. Test specimens are required to be stored in a temperature range of 60°F to 80°F (16°C to 27°C) for a period of up to 48 hours (subject to change based on the type of concrete). Moisture and relative humidity loss are prevented by storing the samples in a moisture-filled environment, which is typically a cooler installed on site. Improper temperature and relative humidity control at the initial stages of the cylinder life can result in inaccurate strength data when testing occurs at later ages. Furthermore, as standard-cured cylinders are subject to these strict curing conditions, they largely do not reflect the in-situ concrete but rather verify the QA/QC of the concrete’s mix design to ensure it meets specifications.

Related Articles

Giatec launches AI-powered tool to optimize concrete mix design

Concrete technology firm Giatec is turning to artificial intelligence (AI) to help producers and contractors optimize their concrete mixes. The Ottawa-based firm, which makes concrete sensors, among other testing technology, has introduced SmartMix, a web-based AI tool that will fine-tune concrete ingredient proportions and reduce cement usage, while still allowing mixes to meet project specifications. Giatec says the new tool, the first of its kind, takes advantage of millions of data points it’s collected from projects its sensors are in use on around the world, and…

SafeAI attracts $21m funding as SmartMix AI tool launches

News of SafeAI’s new funding to develop connected, autonomous sites follows Giatec’s launch of SmartMix AI tool. SafeAI has announced $21 million in Series A funding led by Builders VC which will accelerate R&D and fuel global expansion to meet rising demand for autonomous heavy equipment. SafeAI is driving the transformation of the mining and construction industries through connected, autonomous sites. With chronic labour shortages, unsafe working conditions and frequent project delays, these industries are in a unique position to benefit from autonomy. Unlike on-road applications of the technology, autonomous…

Breakthrough Giatec concrete AI tool debuting at ENR FutureTech Virtual Conference

Giatec, a major concrete testing technology maker, is debuting the claimed world’s first concrete artificial intelligence (AI) tool for producers, SmartMix, at Engineering-News Record’s FutureTech virtual conference. SmartMix is the first web-based AI tool that allows producers to optimise concrete ingredient proportions, reduce cement usage, and predict the performance of their mixes while still meeting project specifications. Ottawa, Canada-headquartered Giatec believes this tool will lower greenhouse gas emissions resulting from concrete production by 400 million tons annually, the equivalent of taking 110 million cars off the…

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.