De-icing concrete could improve roadway safety

De-icing concrete could improve roadway safety, guard against corporate espionage

January 22, 2016 by Scott Schrage

Conductive concrete could keep roads safer in winter weather EurekAlert! Science News

A 200-square-foot slab of seemingly ordinary concrete sits just outside the Peter Kiewit Institute as snowflakes begin parachuting toward Omaha on a frigid afternoon in late December.

The snow accumulates on the grass surrounding the slab and initially clings to the concrete, too. But as the minutes pass and the snow begins melting from only its surface, the slab reveals its secret: Like razors, stoves and guitars before it, this concrete has gone electric.

Its designer, UNL professor of civil engineering Chris Tuan, has added a pinch of steel shavings and a dash of carbon particles to a recipe that has literally been set in concrete for centuries. Though the newest ingredients constitute just 20 percent of Tuan’s otherwise standard concrete mixture, they conduct enough electricity to melt ice and snow in the worst winter storms while remaining safe to the touch.

Tuan’s research team is demonstrating the concrete’s de-icing performance to the Federal Aviation Administration during a testing phase that runs through March 2016. If the FAA is satisfied with the results, Tuan said the administration will consider scaling up the tests by integrating the technology into the tarmac of a major U.S. airport.

“To my surprise, they don’t want to use it for the runways,” Tuan said. “What they need is the tarmac around the gated areas cleared, because they have so many carts to unload—luggage service, food service, trash service, fuel service—that all need to get into those areas.

“They said that if we can heat that kind of tarmac, then there would be (far fewer) weather-related delays. We’re very optimistic.”

A unique bridge that resides about 15 miles south of Lincoln has given Tuan reason to feel confident. In 2002, Tuan and the Nebraska Department of Roads made the 150-foot Roca Spur Bridge the world’s first to incorporate conductive concrete. Inlaid with 52 conductive slabs that have successfully de-iced its surface for more than a decade, the bridge exemplifies the sort of targeted site that Tuan envisions for the technology.

“Bridges always freeze up first, because they’re exposed to the elements on top and bottom,” Tuan said. “It’s not cost-effective to build entire roadways using conductive concrete, but you can use it at certain locations where you always get ice or have potholes.”

Potholes often originate from the liberal use of salt or de-icing chemicals that can corrode concrete and contaminate groundwater over time, Tuan said, making the conductive concrete an appealing alternative with lower operating and maintenance costs. The power required to thermally de-ice the Roca Spur Bridge during a three-day storm typically costs about $250—several times less than a truckload of chemicals, he said.

Tuan said the conductive concrete could also prove feasible for high-traffic intersections, exit ramps, driveways and sidewalks. Yet the technology offers another, very different application that doesn’t even require electric current.

Catching the next wave

By replacing the limestone and sand typically used in concrete with a mineral called magnetite, Tuan has shown that the mixture can also shield against electromagnetic waves. The electromagnetic spectrum includes the radiofrequency waves transmitted and received by cellphones, which Tuan said could make the concrete mixture useful to those concerned about becoming targets of industrial espionage.

Using the magnetite-embedded concrete, Tuan and his colleagues have built a small structure in their laboratory that demonstrates the material’s shielding capabilities.

“We invite parties that are interested in the technology to go in there and try to use their cellphones,” said Tuan, who has patented his design through NUtech Ventures. “And they always receive a no-service message.”

While Tuan’s collaborations have him dreaming big about the future of conductive concrete, he’s currently enjoying its benefits much closer to home.

“I have a patio in my backyard that is made of conductive concrete,” he said with a laugh. “So I’m practicing what I preach.”

Tuan developed the concrete with the assistance of Lim Nguyen, associate professor of electrical and computer engineering; Bing Chen, professor of electrical and computer engineering; and Sherif Yehia, a professor at the American University of Sharjah who earned his doctorate in civil engineering at UNL. The FAA is currently funding the team’s research, which also received past support from the Nebraska Department of Roads.

Source: http://phys.org/news/2016-01-de-icing-concrete-roadway-safety-corporate.html#jCp

Related Articles

Differentiating Inert and Reactive Pozzolanic Materials using Bulk Resistivity

Research Background  Portland cement is often replaced by supplementary cementitious materials (SCMs) in concrete to increase sustainability (reducing CO2 emissions due to lower cement contents) and durability (mitigation of alkali-silica reaction, reduced sulfate attack, and reduced chloride penetration). Fly ash and natural pozzolans are specified using ASTM C618/AASHTO M295, and an important part of this specification is the strength activity index test (SAI), which dictates that a mortar mixture with 20% SCM replacement should reach at least 75% strength of the control mixture at either 7- or 28-days. The SAI is a potentially flawed test as inert materials are known to be able to pass the test. The early testing age, low SCM replacement…

Roxi press release

Giatec’s Pioneering AI Programs for Sustainable Concrete Testing and Reducing CO2 Emissions

In late 2020, Giatec announced that our artificial intelligence (AI) program RoxiTM has been trained with the funding provided by Sustainable Development Technology Canada (SDTC), which will help in the reduction of cement usage during concrete testing. For those that are unfamiliar with Roxi’s functions, require deeper insights into how and why this funding came about, or are curious about the approach Giatec takes towards AI in the concrete industry, we encourage you to dive right into this blog post. Make sure to check out other linked resources throughout the article…

Concrete strength monitoring with thermocouples

Choosing the Right Concrete Thermocouple for Your Jobsite

What Is a Concrete Thermocouple?  In layman’s terms, a thermocouple is an electric device that measures temperature, essentially making it a type of thermometer. That being said, it is not the kind of thermometer you would use to measure your body temperature when running a fever, or to deduce what the atmospheric weather is today, or as an in-built mechanism within your refrigerators and heaters. So, what exactly sets a concrete thermometer apart?  It takes two metals to form a thermocouple, both of which are wires that are welded, crimped, or twisted together, and It takes two metals to form a thermocouple, both of which are…

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.