Is the iCOR compliant with ASTM standards?
There is no standard available yet for the corrosion rate measurement based on the patented CEPRA technique. Giatec iCOR® is the only product on the market that doesn’t require the connection to the reinforcement to obtain corrosion rate. In addition to corrosion rate and resistivity, the iCOR® also provides a standard half-cell measurement unit for corrosion potential measurement; the half-cell measurement is optional as it requires connection to the reinforcement. The standard for corrosion potential measurement of rebar in concrete is ASTM C876.

How does concrete cover thickness affect the readings?
The user needs to input the cover thickness in the software for corrosion rate measurement. The range of cover thickness can vary from 1 cm to 9 cm (0.4 to 3.5 in) with an increment of 1 cm (0.4 in).

How are the colour schemes defined on the reading dashboard and the counter maps?
The color scheme is based on the standards and commonly accepted values in the industry.

Corrosion Potential: The colours are based on the relationship between the potential values and corrosion probabilities described in ASTM C876. Please refer to Table 6 in the user manual.

Concrete Electrical Resistivity: The colours represent the ranges published in various research studies conducted between 1983 and1992. For details refer to Table 4 in the user manual.

Corrosion Rate Mapping: The colours represent the range of values generally accepted as indusrty norms for the classification of the severity of rebar corrosion in concrete. For details, please refer to Table 5 in the user manual.

How does the moisture of concrete affect the iCOR® results?
iCOR™ measurements are sensitive to the concrete moisture. The dryer the concrete is, the higher the electrical resistivity values, the lower the corrosion rate and more positive the corrosion potential will be. Pre-wetting the concrete surface is required before the use of any corrosion measurement. In the case of iCOR®, a wet connection between the electrodes and surface of concrete through sponges is required to obtain reliable measurements.

Can one still do the measurements with perpendicular and parallel cracks on concrete?
The iCOR® applies an electrical current between the two outer electrodes; any cracks or non-conductive layers will disturb the flow of current into concrete. Narrow surface cracking will not affect the results,but any wide and deep cracks perpendicular to the measurement could adversely affect the data or even cause errors in the measurement.

Why can’t I save the measurements on the software?
If the measurements are not valid, an “ERROR” message will be displayed. If the values are out of range, the software will display an “out of range” error message. In those two cases, the software will not allow you to save the measurements.

How do the cover thickness and rebar diameter affect the results?
The effect of cover thickness and rebar diameter will be compensated in the iCOR® algorithm for corrosion rate measurment if the cover thickness and rebar diameter are defined properly in the software.

What is the concept behind the iCOR® corrosion measurement technique?
iCOR® uses the patented CEPRA technique for corrosion rate measurement. Please refer to this document for more information.

Can we do transverse reinforcement measurements?
The iCOR® benefits from the directional measurement capability which allows you to do the measurement in both vertical (Y) and horizontal (X) direction.

Can the size of rebar be updated later?
No, the size of the rebar is defined in the project and cannot be updated later during the measurments. Changing the rebar diameter will affect your corrosion rate measurement. You need to create a new project in order to change the rebar diameter.

What kind of electrode is used in the iCOR® for corrosion potential measurement?
The iCOR® uses a solid-base Ag/AgCl electrode for the half-cell measurement. This is a maintenance- free electrode capable of doing upside down measurement and also less prone to contamination due to chlorides. Ag/AgCl has a fixed potential offset compared to the Cu/CuSO4 electrode; the iCOR® software accounts for this difference and presents the results in mV/CSE (i.e., Cu/CuSO4 Electrode) as per the ASTM C876.

What kind of maintenance is required?
iCOR® is a maintenance-free device. Simply make sure it is kept clean and always carry it in the secure case provided to avoid any accidental damages. After the use of the half-cell, the electrode storage solution needs to be applied on the sponge, and the cap needs to be closed properly to maintain the electrode in good condition for the next use.

What is the maximum grid size?
The maximum allowed grid size is 25x25. Be aware that a grid size with a large aspect ratio (greater than 3), for example, 2x10 points, may adversely affect the quality of contour maps.

What is the battery life and charge time?
The battery life of the iCOR® can last for a day of testing and takes 4 hours to recharge completely. The battery level of the iCOR® is displayed on the top right corner of the application. For power saving, the iCOR® disconnects and turns off after five minutes of inactivity. The tablet can last for 5 to7 hours of continuous usage (screen turn-on time). It is recommended to charge the tablet and the iCOR® before each testing project on the jobsite.

What types of reports can I obtain from the software?
The application provides you with an option to export the data as PNG (only contour map), PDF report (general information about the project and the main results) and .csv (raw and analyzed data for each measurement points). The documents can be shared by email, Drop Box, etc.

Can I do a measurement on epoxy coated rebar?
The iCOR® applies an electrical current between the two outer electrodes; any non-conductive layer will cause interruption in the flow of current into concrete. If the epoxy on the bar is perfectly intact, no measurement would be possible.

Where can I find more resources about concrete corrosion?
  1. Alonso, C., Andrade, C., and Gonzalez, J. A. (1988). Relation between Resistivity and Corrosion Rate of Reinforcements in Carbonated Mortar Made with Several Cement Types. Cem. Concr. Res., 18(5), 687-698.
  2. Andrade, C., and Gonzalez J. A. (1978). Quantitative Measurements of Corrosion Rate of Reinforcing Steels Embedded in Concrete Using Polarization Measurements. Werkst. Korros., 29(8), 515-519.
  3. Andrade, C., & Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315-328.
  4. Andrade, C., & Alonso, C. (2001). On-site measurements of corrosion rate of reinforcements. Construction and Building Materials, 15(2-3), 141-145.
  5. Andrade, C., Castelo, V., Alonso, C., & Gonzalez, J. (1984). The Determination of the Corrosion Rate of Steel Embedded in Concrete by the Polarization Resistance and AC Impedance Methods. Corrosion Effect of Stray Currents and the Techniques for Evaluating Corrosion of Rebars in Concrete, 43-63.
  6. Andrade, C., & González, J. A. (1978). Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Werkstoffe Und Korrosion, 29, 515-519.
  7. Arup, H. (1983). The Mechanisms of the Protection of Steel by Concrete. Society of Chemical Industry, , 151-157.
  8. ASTM C876-91(1999). Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete.
  9. ASTM G1-90 (1999). (2002). Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens.
  10. Balabanic, G., Bicanic, N., and Durekovic, A. (1995). Numerical Analysis of Corrosion Cell in Concrete. Int. J. Eng. Modell., 8(1-2), 1-5.
  11. Bastidas, D. M., González, J. A., Feliu, S., Cobo, A., & Miranda, J. M.  (2007). A Quantitative Study of Concrete-Embedded Steel Corrosion Using Potentiostatic Pulses. System, 7, 10.
  12. Berke, N. S., Shen, D. F., & Sundberg, K. M. (1990). Comparison of Current Interruption and Electrochemical Impedance Techniques in the Determination of Corrosion Rates of Steel in Concrete. The Measurement and Correction of Electrolyte Resistance in Electrochemical Tests.
  13. Berke, N. S., Shen, D. F., & Sundberg, K. M. (1990). Comparison of the Polarization Resistance Technique to the Macrocell Corrosion Technique. Corrosion Rates of Steel in Concrete, , 38-51.
  14. Berkeley, K. G. C., and Pathmanaban, S. (1990). Cathodic Protection of Reinforcement Steel in Concrete, Butterworth-Heinemann, London.
  15. Bertolini, L., Elsener, B., Pedeferri, P., and Polder, R. (2004). Corrosion of Steel in Concrete, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  16. Bohni, H. (2005). Corrosion in Reinforced Concrete Structures, CRC Press, New York.
  17. Broomfield, J. P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair Sponpress.
  18. Browne, R. D., Geoghegan, M. P., & Baker, A. F. (1983). Analysis of Structural Condition from Durability Results. Corrosion of Reinforcement in Concrete Construction.Chichester: Ellis Horwood, , 193-222.
  19. Cady, P. D., & Gannon, E. J. (1992). Condition Evaluation of Concrete Bridges Relative to Reinforcement Corrosion. Volume 8: Procedure Manual.
  20. Cleland, D. J., Yeoh, K. M., & Long, A. E. (1997). Corrosion of reinforcement in concrete repair. Construction and Building Materials, 11, 233-238.
  21. Cox, R. N., Cigna, R., Vennesland, Ø, & Valente, T. (1997). COST 509: Final report Corrosion and protection of metals in contact with concrete.
  22. Elsener, B. (2001). Half-cell potential mapping to assess repair work on RC structures. Construction and Building Materials, 15(2-3), 133-139.
  23. Elsener, B. (2002). Macrocell corrosion of steel in concrete–implications for corrosion monitoring. Cement and Concrete Composites, 24(1), 65-72.
  24. Elsener, B. (2005). Corrosion rate of steel in concrete—Measurements beyond the Tafel law. Corrosion Science, 47(12), 3019-3033.
  25. Elsener, B., Andrade, C., Gulikers, J., Polder, R., & Raupach, M. (2003). Hall-cell potential measurements—Potential mapping on reinforced concrete structures. Materials and Structures, 36(7), 461-471.
  26. Elsener, B., & Bohni, H. (1988). Potential Mapping and Corrosion of Steel in Concrete. Corrosion Rates of Steel in Concrete, , 143-156.
  27. Elsener, B., & Böhni, H. (1995). Condition evaluation of reinforced concrete bridges–The benefits of potential mapping. Proc. 6 thInt. Conf. Structural Faults Repair, London, 47-52.
  28. Elsener, B., Muller, S., Suter, M., & Bohnl, H. (1990). Corrosion Monitoring of Steel in Concrete--Theory and Practice. Corrosion of Reinforcement in Concrete, , 348-357.
  29. Elsener, B., Wojtas, H., & Boehni, H. (1994). Galvanostatic Pulse Measurements—Rapid On-Site Corrosion Monitoring. Corrosion and Corrosion Protection of Steel in Concrete, 1, 236-246.
  30. Feliu, S., Andrade, C., González, J. A., & Alonso, C. (1996). A new method for in-situ measurement of electrical resistivity of reinforced concrete. Materials and Structures, 29(6), 362-365.
  31. Feliu, S., Gonzalez, J. A., & Andrade, C. (1996). Electrochemical methods for on-site determinations of corrosion rates of rebars. Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures,
  32. Feliu,S., Gonzalez, J.A., Escudero, M. L., & Andrade, M. C. (1990). Possibilities of the guard ring for electrical signal confinement in the polarization measurements on reinforcements. Corrosion (Houston, TX.), 46(12), 1015-1020.
  33. Feliu, S., Gonzalez, J. A., feliu Jr., S., & Andrade, M. C. (1990). Confinement of the Electrical Signal for in Situ Measurement of Polarization Resistance in Reinforced Concrete. ACI Materials Journal, 87(5).
  34. Flis, J., Sabol, S., Pickering, H. W., Sehgal, A., Osseo-Asare, K., & Cady, P. D. (1993). Electrochemical measurements on concrete bridges for evaluation of reinforcement corrosion rates. Corrosion-Houston TX, 49, 601-601.
  35. Garcés, P., Andrade, M. C., Saez, A., & Alonso, M. C. (2005). Corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments in the micropores of concrete in the propagation period. Corrosion Science, 47(2), 289-306.
  36. Ge, J., and Isgor, O. B. (2006). On the Numerical Solution of Laplace's Equation with Nonlinear Boundary Conditions for Corrosion of Steel in Concrete. ISCCBE Conference (CD-Rom), Montreal, Canada.
  37. Ge, J., and Isgor, O. B. (2007). Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete. Materials and Corrosion(1995), 58(8), 573-582.
  38. Geenen, F. M. (1991). Characterization of Organic Coatings With Impedance Measurements. Doctoral Dissertation, Delft University of Technology,
  39. Ghods, P., Isgor, O. B., and Pour-Ghaz, M. (2007). A Practical Method for Calculating the Corrosion Rate of Uniformly Depassivated Reinforcing Bars in Concrete. Mater. Corros., 58(4), 265-272.
  40. Ghods, P., Isgor, O. B., & McRae, G. (2009)The Effect of Concrete Pore Solution Composition on the Quality of Oxide Films on Black Steel Reinforcement. Cement and Concrete Composites, 31(1), 2-11.
  41. GjØrv, O. E., Vennesland, Ø., and El-Busiady, A. H. S. (1977). Electrical Resistivity of Concrete in the Oceans. Proc., 9th Annual Offshore Technology Conference, Houston, Texas, 581-588.
  42. González, J. A., Cobo, A., González, M. N., & Feliu, S. (2001). On-site determination of corrosion rate in reinforced concrete structures by use of galvanostatic pulses. Corrosion Science, 43(4), 611-625.
  43. Gowers, K. R., & Millard, S. G. (1999). Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique. ACI Materials Journal, 96(5)
  44. Gowers, K. R., Millard, S. G., Gill, J. S. and Gill, R. P. (1994). programmable Linear Polarization Meter for Determination of Corrosion Rate of Reinforcement in Concrete Structures. Br. Corros. J., 29(1), 25-32.
  45. Gu, P., & Beaudoin, J. J. (1998). Obtaining Effective Half-Cell Potential Measurements in Reinforced Concrete Structures. Institute for Research in Construction: Construction Technology Update, 18(4)
  46. Gulikers, J. (2005). Theoretical Considerations on the Supposed Linear Relationship between Concrete Resistivity and Corrosion Rate of Steel Reinforcement. Mater. Corros., 56(6), 393-403.
  47. Isgor, O. B., and Razaqpur, A. G. (2004). Finite Element Modeling of Coupled Heat Transfer, Moisture Transport and Carbonation Processes in Concrete Structures. Cem. Concr. Compos., 26(1), 57-73.
  48. Jackson, P. D. (1981). Focussed electrical resistivity arrays: some theoretical and practical experiments. Geophysical Prospecting, 29(4), 601-626.
  49. John, D. G. (1981). Use of AC impedance technique in studies on steel in concrete in immersed conditions. British Corrosion Journal, 16(2)
  50. Jones, D. A. (1996). Principles and Prevention of Corrosion (ed.).
  51. Kranc, S. C., & Sagüés, A. A. (1993). Computation of Reinforcing Steel Corrosion Distribution in Concrete Marine Bridge Substructures. Corrosion National Association of Corrosion Engineers Annual Conference.
  52. Kranc, S. C., and Sagues, A. A. (1994). Computation of Reinforcing Steel Corrosion Distribution in Concrete Marine Bridge Substructures. Corrosion, 50(1), 50-61.
  53. Langford, P., & Broomfield, J. P. (1987). Monitoring the corrosion of reinforcing steel. Construction Repair, 1(2), 32-36.
  54. Law, D. W., Millard, S. G., & Bungey, J. H. (2000). Linear polarisation resistance measurements using a potentiostatically controlled guard ring. NDT & E International, 33(1), 15-21.
  55. Li, D., Flis, J., Sehgal, A., Kho, Y. T., & Saboi, S. (1992). Condition Evaluation of Concrete Bridges Relative to Reinforcement Corrosion. Volume 2. Method for Measuring the Corrosion Rate of Reinforcing Steel.
  56. Luping, T. (2002). Calibration of the Electrochemical Methods for the Corrosion Rate Measurement of Steel in Concrete NORDTEST Project No. 1531-01. SP RAPPORT-STATENS PROVNINGSANSTAL.
  57. Martinez, I., Andrade, C., Rebolledo, N., Bouteiller, V., Marie-Victoire, E., & Olivier, G. (2008). Corrosion Characterization of Reinforced Concrete Slabs with Different Devices. Corrosion-Houston TX, 64(2), 107.
  58. Matsuoka, K., Kihira, H., Ito, S., & Murata, T. (1988). Corrosion Monitoring for Reinforcing Bars in Concrete. Corrosion Rates of Steel in Concrete, , 103-117.
  59. Millard, S. G., & Gowers, K. R. (1992). Resistivity assessment of in-situ concrete: the influence of conductive and resistive surface layers. Structures and Buildings, 94(4), 389-396.
  60. Millard, S. G., Law, D., Bungey, J. H., & Cairns, J. (2001). Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete. NDT & E International, 34(6), 409-417.
  61. Morris, W., Moreno, E. I., & Sagues, A. A. (1996). Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe. Cement and Concrete Research, 26(12), 1779-1787.
  62. Munn, R. S., and Devereux, O. F. (1991). Numerical Modeling and Solution of Galvanic Corrosion Systems. Part I. Governing Differential Equation and Electrodic Boundary Conditions. Corrosion, 47(8), 612-618.
  63. Newman, J. (1966). Resistance for Flow of Current to a Disk. Journal of the Electrochemical Society, 113, 501.
  64. Newton, C. J., & Sykes, j. M. (1988). A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corrosion Science, 28(11), 1051-1074.
  65. Oelssner, W., Berthold, F., & Guth, U. (2006). The iR drop-: well-known but often underestimated in electrochemical polarization measurements and corrosion testing. Materials and Corrosion (1995), 57(6), 455-466.
  66. Polder, R. B. (2001). Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Construction and Building Materials, 15(2-3), 125-131.
  67. Pruckner, F., & Gjrv, O. E. (2002). Patch repair and macrocell activity in concrete structures. ACI Materials Journal, 99, 143-148.
  68. Ramniceanu, A. (2004). Correlation of Corrosion Measurements and Bridge Conditions with NBIS Deck Rating. M.Sc. Thesis,
  69. Redaelli, E., Bertolini, L., Peelen, W., and Polder, R. (2006). FEM-models for the Propagation Period of Chloride Induced Reinforcement Corrosion. Mater Corros., 57(8), 628-635.
  70. Revie, R. W., & Uhlig, H. H. (2008). Corrosion and Corrosion Control Wiley-Interscience.
  71. RILEM TC 154-EMC. (2003). Half-cell Potential Measurements – Potential Mapping on Reinforced Concrete Structures. Mater. Struct., 36(7), 461-471.
  72. Sagues, A. A., and Kranc, S. C. (1992). On the Determination of Polarization Diagrams of Reinforcing Steel in Concrete. Corrosion, 48(8), 624-633.
  73. Sehgal, A., Kho, Y. T., Osseo-Asare, K., & Pickering, H. W. (1992). Comparison of corrosion rate-measuring devices for determining corrosion rate of steel-in-concrete systems. Corrosion- Houston TX, 48, 871-871.
  74. Sehgal, A., Li, D., Kho, Y. T., Osseo-Asare, K., & Pickering, H. W. (1992). Reproducibility of Polarization Resistance Measurements in Steel-in-Concrete Systems. Corrosion- Houston TX, 48, 706-706.
  75. Stern, M., & Geary, A. L. (1957). Electrochemical Polarization, LA theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society, 104, 56-63.
  76. Stratfull, R. (1957). The corrosion of steel in a reinforced concrete bridge. Corrosion, 13(3), 173-179.
  77. Uhlig, H. H., and Revie, R. W. (1985). Corrosion and Corrosion Control, 3rd Ed., John Wiley & Sons, New York.
  78. Videm, K., & Myrdal, R. (1997). Electrochemical Behavior of Steel in Concrete and Evaluation of the Corrosion Rate. Corrosion- Houston TX, 53, 734-742.
  79. Virmani, P. (2002). Corrosion Costs and Preventive Strategies in the United States. Publication no.FHWA-RD-01-156 (Washington, DC: FWHA, 2002),
  80. Warkus, J., Brem, M., and Raupach, M. (2006). BEM-models for the Propagation Period of Chloride Induced Reinforcement Corrosion. Mater. Corros., 57(8), 636-641.
  81. Zhang, J., & Mailvaganam, N. P. (2006). Corrosion characteristics and key electrochemical factors in patch repair. Canadian Journal of Civil Engineering, 33(6), 785-793.

Where can I find more information on electrical resistivity of concrete?
  1. Hammond, E., & Robson, T. D. (1955). Comparison of Electrical Properties of Various Cements and Concretes. The Engineer (London), 199(5165) 78-80, and 199(5166), 114-115.
  2. Nikkanen, P. (1962). On the Electrical Properties of Concrete and Their Applications. Vaftion Tebsilliren Tutkirndaitos, Tiedotus, Sarja III, Rakennus 60, 75 pages. In Finnish with English summary.
  3. Henry, R. L. (1964). Water Vapor Transmission and Electrical Resistivity of Concrete. Final Report. U. S. Naval Civil Engineering Laboratory, Port Hueneme, California, Technical Report,R-314, 39 pages.
  4. Tobio, J. M. (1959). A Study of the Setting Process, Dielectric Behavior of Several Spanish Cements. Silicates Zrrdrcsb-iek, 24, 30-35 and 81-87.
  5. Power, T. C. (1958). Structure and Physical Properties of Hardened Portland Cement Paste. Journal of the American Ceramic Society, 41(1), 1-6; PCA Research Department, Bulletin 94.
  6. Jones, G., & Christian, S. M. (1935). The Measurement of the Conductance of Electrolytes. VI. Galvanic Polarization by Alternating Current. Journal of the American Chemical Society, 57, 272-280.
  7. Terry, E. M. (1929). ADVANCED LABORATORY PRACTICE IN ELECTRICITY AND MAGNETISM, 2nd Edition, McGraw-Hill, N.Y., 197.
  8. Fricke, H. (1931). The Electric Conductivity and Capacity of Disperse Systems. Physics, 1(2), 106-115.
  9. Frcitag, F. E. (1959). (Dyckerhoff and Widmann Kommanditgesellschaf t). Increasing the Electrical Resistance and Strength of Concrete. German Patent No. 1,064,863. In German. See abstract in English in Chemical Abstracts, 55(8), 7798d.
  10. Budnikov, P. P., & Strelkov, M.I. (1966). Some Recent Concepts on Portland Cement Hydration and Hardening. SYMPOSIUM ON STRUCTURE OF PORTI.AND CEMENT PASTE AND CONCRETE, Highway Research Board Special Report 90, Table 3, 450.
  11. Seligmann, P. (1968). Nuclear Magnetic Resonance Studies of the Water in Hardened Cement Paste. Journal of the PCA Research and Development Laboratories, 10(1), 52-65; PCA Research Department Bulletin 222.
  12. Monfore, G. E., & Verbeck, G. J. (1960). Corrosion of Prestressed Wire in Concrete. Journal of the American Concrete Institute; Proceedings, 57, 491-515; PCA Research Department Bulletin 120.
  13. Monfore, G. E., & Ost, B. (1965). Corrosion of Aluminum Conduit in Concrete. Journal of the PCA Research and Development Laboratories, 7(1), 10-22; PCA Research Department Bulletin 173.
  14. Andrade, C. (2010). Types of Models of Service Life of Reinforcement: The Case of the Resistivity. Concrete Research Letters, 1(2), 73- 80.
  15. Bertolini, L., & Polder, R. B. (1997). Concrete Resistivity and Reinforcement Corrosion Rate as a Function of Temperature and Humidity of the Environment. TNO report 97-BT-R0574, Netherland.
  16. Bryant, J. W., Weyers, R. E., & Garza, J. M. (2009). In-Place Resistivity of Bridge Deck Concrete Mixtures. ACI Materials Journal, 106(2), 114-122.
  17. Buehlef, M. G. & Thurber, W. R. (1976). A Planar Four-Probe Structure for Measuring Bulk Resistivity. IEEE Transactions on Electron Devices, 23(8), 968-974.
  18. Butefuhr, M., Fischer, C., Gehlen, C., Menzel, K., & Nurnberger, U. (2006). On-Site Investigation on Concrete Resistivity a Parameter of Durability Calculation of Reinforced Concrete Structures. Materials and Corrosion, 57(12), 932-939.
  19. Chatterji, S. (2005). A Discussion of the Papers, ''A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 1 and Part 2'' by K. Stanish, R.D. Hooton, M.D.A. Thomas. Cement and Concrete Research, 35(9), 1865-1867.
  20. Chini, A. R., Muszynski, L. C., & Hicks J. (2003). Determination of Acceptance Permeability Characteristics for Performance-Related Specifications for Portland Cement Concrete. Final report submitted to FDOT (MASc. Thesis), University of Florida, Department of Civil Engineering.
  21. Edvardsen, C. (2002). Chloride Migration Coefficients from Non-Steady-State Migration Experiments at Environment-Friendly “Green” Concrete. Retrieved from www.gronbeton.dk/artikler/Chloride%20migration%20coefficients.pdf.
  22. Elkey, W. & Sellevold E. J. (1995). Electrical Resistivity of Concrete. Published Report, No. 80, Norwegian Road Research Laboratory, Oslo, Norway, 36 pages.
  23. Ewins, A. J. (1990). Resistivity Measurements in Concrete. British Journal of NDT, 32(3), 120-126.
  24. Feliu, S., Andrade, C., Gonzalez, J. A., & Alonso, C. (1996). A New Method for In-situ Measurement of Electrical Resistivity of Reinforced Concrete. Materials and Structures, 29(6), 362-365.
  25. Ferreira, R. M., & Jalali, S. (2010). NDT Measurements for the Prediction of 28-day Compressive Strength. NDT & E International, 43(2), 55-61.
  26. Florida DOT FM 5-578. (2004). Method of Test for Concrete Resistivity as an Electrical Indicator of Its Permeability, 226.
  27. Forster, S.W. (2000). Concrete Durability-Influencing Factors and Testing. Farmington Hills, MI. Durability of Concrete, ACI Committee, Vol. 191, 1-10.
  28. Gowers, K. R. & Millard, S. G. (1999). Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique. ACI Material Journal, 96(5), 536-541.
  29. Hansson, I. L. H. & Hansson, C. M. (1953). Electrical Resistivity Measurements of Portland Cement Based Materials. Cement and Concrete Research, 13(5), 675-683.
  30. Hooton, R.D., Thomas, M.D.A., & Stanish, K., (2001). Prediction of Chloride Penetration in Concrete. Federal Highway Administration, Report No. FHWA-RD-00-142.
  31. Ishida, T., & Li, C. H. (2008). Modeling of Carbonation Based on Thermo-Hygro Physics with Strong Coupling of Mass Transport and Equilibrium in Micro-pore Structure of Concrete. Retrieved from http://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter14/isida.pdf
  32. Jianyong, L., & Pei, T. (1997). Effect of Slag and Silica Fume on Mechanical Properties of High Strength Concrete. Cement and Concrete Research, 27(6), 833-837.
  33. Kosmatka, S. H., Kerkhoff, B., Panarese, W. C., MacLeod, N. F., &McGrath, R. J. (2002). Design and Control of Concrete Mixtures, Seventh Canadian Edition. Cement Association of Canada, 227.
  34. Kessler, R. J., Power, R. G., & Paredes, M. A. (2005). Resistivity Measurements of Water Saturated Concrete as an Indicator of Permeability. Corrosion 2005, Houston, TX, 1-10.
  35. Kessler, R. J., Power, R. G., Vivas, E., Paredes, M. A., & Virmani, Y.P. (2008). Surface, Resistivity as an Indicator of Concrete Chloride Penetration Resistance. Retrieved from http://concreteresistivity.com/Surface%20Resistivity.pdf
  36. Lataste, J. F., Sirieix, C., Breysse, D., & Frappa M. (2003). Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering. NDT & E International, 36(6), 383-394.
  37. Lopez, W., & Gonzalez, J. A. (1993). Influence of the Degree of Pore Saturation on the Resistivity of Concrete and the Corrosion Rate of Steel Reinforcement. Cement and Concrete Research, 23(2), 368-376.
  38. McCarter, W. J., Starrs, G., Kandasami, S., Jones, R., & Chrisp, M. (2009). Electrode Configuration for Resistivity Measurements on Concrete. ACI Materials Journal, 106(3), 258-264.
  39. Millard, S. G., Harrison, J. A., & Edwards, A. J. (1989). Measurements of the Electrical Resistivity of Reinforced Concrete Structures for the Assessment of Corrosion Risk. British Journal of NDT, 13(11), 617-621.
  40. Millard, S. G. & Gowers, K. R. (1991). The Influence of Surface Layers upon the Measurement of Concrete Resistivity. Durability of Concrete, Second International Conference, ACI SP-126, Montreal, Canada, 1197-1220, 228.
  41. Monfore, G. E. (1968). The Electrical Resistivity of Concrete. Journal of the PCA Research Development Laboratories, 10(2), 35-48.
  42. Monkman, S. & Shao, Y. (2006). Assessing the Carbonation Behaviour of Cementitious Materials. Journal of Materials in Civil Engineering, 18(6), 768-776.
  43. Morris, W., Moreno, E. I., & Sagues, A. A. (1996). Practical Evaluation of Resistivity of Concrete in Test Cylinders Using A Wenner Array Probe. Cement and Concrete Research, 26(12), 1779-1787.
  44. Newlands, M. D., Jones, M. R., Kandasami, S., & Harrison T. A. (2008). Sensitivity of Electrodes Contact Solutions and Contact Pressure in Assessing Electrical Resistivity of Concrete. Materials and Structures, 41(4), 621-632.
  45. Nokken, M. R. & Hooton, R. D. (2006). Electrical Conductivity as a Prequalification and Quality Control. Concrete International, 28(10), 61-66.
  46. Parrott, L. J. (1994). Moisture Conditioning and Transport Properties of Concrete Test Specimens. Materials and Structures, 27(8), 460-468.
  47. Polder, R. B. (2001). Test Methods for on Site Measurement of Resistivity of Concrete – a RILEM TC-154 Technical Recommendation. Construction and Building Materials, (15)2-3, 125-131, 229.
  48. Pun, P., Kojuncdic, T., Hooton, R.D., Kojundic, T., & Fidjestol P. (1997). Influence of Silica Fume on Chloride Resistance of Concrete. Proceedings of PCI/FHWA International Symposium on High Performance Concrete, New Orleans, Louisiana, 245–256.
  49. RILEM Technical Committee. (2005). Update of the Recommendation of RILEM TC 189-NEC Non-destructive Evaluation of the Concrete Cover (Comparative Test Part I, Comparative Test of Penetrability Methods). Materials & Structures, 38(284), 895-906.
  50. Savas B. Z. (1999). Effect of Microstructure on Durability of Concrete (PhD Thesis). North Carolina State University, Department of Civil Engineering, Raleigh NC.
  51. Sengul, O. & Gjorv, O. E. (2008). Electrical Resistivity Measurements for Quality Control During Concrete Construction. ACI Materials Journal, 105(6), 541-547.
  52. Sengul, O. & Gjorv, O. E. (2009). Effect of Embedded steel on Electrical Resistivity Measurements on Concrete Structures. ACI Materials Journal, 106(1), 11-18.
  53. Scrivener, K. L., Crumbie, A. K., & Laugesen P. (2004). The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interface Science, 12(4), 411- 421, 230.
  54. Shi, C. (2004). Effect of Mixing Proportions of Concrete on its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results. Cement and Concrete Research, 34(3), 537-545.
  55. Smith, K. M., Schokker, A. J., & Tikalsky P. J. (2004). Performance of Supplementary Cementitious Materials in Concrete Resistivity and Corrosion Monitoring Evaluations. ACI Materials Journal, 101(5), 385-390.
  56. Stanish, K., Hooton, R. D., & Thomas, M. D. A. (1997). Testing the Chloride Penetration Resistance of Concrete: A Literature Review. Department of Civil Engineering University of Toronto, Ontario, Canada. FHWA Contract DTFH61-97-R 00022. Prediction of Chloride Penetration in Concrete.
  57. Stanish, K., Hooton, R. D., & Thomas, M. D. A. (2004). A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 1. Theoretical description. Cement and Concrete Research, 34(1), 43-49.
  58. Stanish, K., Hooton, R. D., & Thomas M. D. A. (2004). A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 2. Experimental study. Cement and Concrete Research, 34(1), 51-57.

About Giatec Scientific Inc.

Giatec is driving breakthrough innovations in the concrete industry, bringing real-time data on concrete performance to the forefront of every construction jobsite. Their suite of hardware and software products, including non-destructive testing technologies, IoT solutions, and wireless sensors, analyze data throughout concrete’s lifecycle, helping to build structures faster, safer, and more economically.

Combining wireless concrete sensors and mobile apps, Giatec has developed smart IoT-based technologies, like SmartRock™ concrete maturity sensors, for real-time monitoring of concrete properties. This provides critical information to contractors so they can make efficient and informed decisions on the jobsite, ultimately saving time and money. Ready-mix producers also leverage the SmartRock™ Plus cloud, which gives them access to concrete performance data to optimize their mix designs. Learn More about Giatec's Suite of Products.

Call: +1 (877) 497-6278
Get a Quote
Request a Demo