Research in Traffic Management to Help Field Engineers

When drivers face a work zone, they have a choice: go through or go around. But for traffic engineers, this choice represents an awkward problem.

How do you forecast the number of drivers who will divert around the work zone versus the number that will go through, in order to create an effective traffic management plan?

Eil Kwon, professor at the Department of Civil Engineering at the University of Minnesota Duluth (UMD), the principal investigator of this study stated, “the capability to accurately estimate the traffic diversion caused by work-zone delays and the capacity reduction associated with lane closures is of critical importance in developing effect traffic management plans. However, the traffic planning models that had been used to address these problems require a very time-consuming process and an extensive origin/destination data set that is not easily available to practicing engineers.”

A new study from UMD researchers aims to help engineers solve this problem and eventually create improved traffic management plans for their work zones.

First, the research team began with a set of traffic data that was collected from 12 work-zone sites in the Twin Cities’ freeway network. Thereafter, the researchers analyzed the data to create a set of new traffic diversion models that relates the diversion rates at highway ramps to freeway delays and alternate-route travel times for different types of corridors. Finally, they developed an approximation process in which a freeway simulation model interacts with the newly created diversion estimation models until a convergence is achieved between diversion and resulting freeway delays. The research group also analyzed the capacity changes in work zones and determined a set of capacity values for the sections with lane closures.

“When we tested this model using both new and existing work-zone data, it showed very promising results,” Kwon says. “We believe this methodology can be used to effectively determine both the diversion rates and freeway delays for a given work zone without requiring origin/destination demand data.”

Based on their findings, the researchers have integrated their results into a guideline that can provide practical assistance to field engineers in estimating the traffic diversion rates and capacity reduction for work zones. These values can then be used to develop an accurate and effective work-zone traffic management plan.

In the future, researchers hope to develop a user-friendly, computerized process for field engineers, so that diversion rates at a given work zone can be determined in an efficient way.

The study was sponsored by the Minnesota Department of Transportation (MnDOT). “An accurate estimate of delay is an important component of a transportation management plan, and it is also very challenging,” says Tiffany Dagon, traffic work zone engineer with MnDOT’s Metro Division. “We are excited to have this new tool and look forward to using it during the design of upcoming projects.”


Leave a Reply

Your email address will not be published. Required fields are marked *

Related Articles

Differentiating Inert and Reactive Pozzolanic Materials using Bulk Resistivity

Research Background  Portland cement is often replaced by supplementary cementitious materials (SCMs) in concrete to increase sustainability (reducing CO2 emissions due to lower cement contents) and durability (mitigation of alkali-silica reaction, reduced sulfate attack, and reduced chloride penetration). Fly ash and natural pozzolans are specified using ASTM C618/AASHTO M295, and an important part of this specification is the strength activity index test (SAI), which dictates that a mortar mixture with 20% SCM replacement should reach at least 75% strength of the control mixture at either 7- or 28-days. The SAI is a potentially flawed test as inert materials are known to be able to pass the test. The early testing age, low SCM replacement…

Roxi press release

Giatec’s Pioneering AI Programs for Sustainable Concrete Testing and Reducing CO2 Emissions

In late 2020, Giatec announced that our artificial intelligence (AI) program RoxiTM has been trained with the funding provided by Sustainable Development Technology Canada (SDTC), which will help in the reduction of cement usage during concrete testing. For those that are unfamiliar with Roxi’s functions, require deeper insights into how and why this funding came about, or are curious about the approach Giatec takes towards AI in the concrete industry, we encourage you to dive right into this blog post. Make sure to check out other linked resources throughout the article…

Concrete strength monitoring with thermocouples

Choosing the Right Concrete Thermocouple for Your Jobsite

What Is a Concrete Thermocouple?  In layman’s terms, a thermocouple is an electric device that measures temperature, essentially making it a type of thermometer. That being said, it is not the kind of thermometer you would use to measure your body temperature when running a fever, or to deduce what the atmospheric weather is today, or as an in-built mechanism within your refrigerators and heaters. So, what exactly sets a concrete thermometer apart?  It takes two metals to form a thermocouple, both of which are wires that are welded, crimped, or twisted together, and It takes two metals to form a thermocouple, both of which are…

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.