Laser Scanning: New Fire Damage Detection in Concrete

Though concrete is known to be a material which has high fire-resistance, its physical, chemical and mechanical properties do endure severe changes when subjected to high temperatures – particularly with temperatures over 300 degrees Celsius. Fire is actually one of the most serious potential risks to concrete structures such as bridges, buildings and tunnels. As such, a structural safety assessment is required in order to evaluate bearing capacity and durability in fire-damaged concrete structures.

There are a number of conventional on-site and off-site techniques that are currently available for the assessment of fire-damaged concrete. However, all methods have their advantages and disadvantages. Wallace Mukupa of Nottingham Geospatial Institute at UNNC took to studying the use of terrestrial laser scanning (TSL) as a non-destructive means of assessing and detecting fire-damaged concrete. Wallace stated, “Scanning can be done at a distance, which improves site safety. Scanning is also quick, with millions of points measured in a few seconds and a spatial resolution acquired in a short time. This is advantageous for engineering structures considering their scale and magnitude.”

Mukupa’s study investigated influences of scanning incidence angle and distance on the laser intensity returns. The change in concrete colour was also examined. Data was collected and interpreted on heated and unheated concrete in order to establish a baseline. Concrete specimens were heated in a furnace to temperatures as high as 1000 degrees Celsius. Throughout the experiments, the measurement of the incidence angles for the samples had been found to vary with distance and a trend was established. That is, as scanning distance increased, the incidence angle decreased.

Mukupa said, “A comparative analysis of the laser intensity for heated and unheated concrete showed that the recorded intensity values for heated concrete are higher than those of unheated concrete. In fact, the laser intensity values of heated concrete showed a remarkable increase in the concrete exposure temperatures from 250 – 1000 degrees Celsius.” He continued, “ Such a correlation between the intensity and the exposure temperature is of cardinal importance in assessing the condition and extent of damage to concrete. This finding implies it could be possible to use laser intensity to detect the state of concrete whether it has been heated or not.”

Laser scanners also have an advantage to other techniques in the market in that most of them have either an internal or external camera which can be utilized to seize concrete images.

The results from the study concluded that using the TLS approach is a feasible option to assessing levels of fire-damaged concrete and further provides and understanding of the concrete’s condition in relation to strength changes when subjected to elevated temperatures.

Source: New laser scanning test to assess fire-damaged concrete

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Articles

Roxi press release

Giatec’s Pioneering AI Programs for Sustainable Concrete Testing and Reducing CO2 Emissions

In late 2020, Giatec announced that our artificial intelligence (AI) program RoxiTM has been trained with the funding provided by Sustainable Development Technology Canada (SDTC), which will help in the reduction of cement usage during concrete testing. For those that are unfamiliar with Roxi’s functions, require deeper insights into how and why this funding came about, or are curious about the approach Giatec takes towards AI in the concrete industry, we encourage you to dive right into this blog post. Make sure to check out other linked resources throughout the article…

Concrete strength monitoring with thermocouples

Choosing the Right Concrete Thermocouple for Your Jobsite

What Is a Concrete Thermocouple?  In layman’s terms, a thermocouple is an electric device that measures temperature, essentially making it a type of thermometer. That being said, it is not the kind of thermometer you would use to measure your body temperature when running a fever, or to deduce what the atmospheric weather is today, or as an in-built mechanism within your refrigerators and heaters. So, what exactly sets a concrete thermometer apart?  It takes two metals to form a thermocouple, both of which are wires that are welded, crimped, or twisted together, and It takes two metals to form a thermocouple, both of which are…

The Importance of Monitoring Temperature Differentials in Mass Concrete

Closely monitoring concrete temperatures is critical for ensuring proper strength development of concrete structures, regardless of their application or size. However, when it comes to mass concrete structures, temperature differentials also need to be considered due to the risk of a large difference between the relatively hot internal temperature and cool surface temperature. If a too-large temperature differential occurs, the surface of mass concrete will start cracking, which is detrimental to its durability and the length of its service life. What is Mass Concrete? Mass concrete…

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.