Evaluating Cracking in Concrete: Procedures

Article originally appeared on: www.bluey.com.au


Concrete provides structures with strength,rigidity, and resilience from deformation. These
characteristics, however, result in concrete structures lacking the flexibility to move in response
to environmental or volume changes. Cracking is usually the first sign of distress in
concrete. It is, however, possible for deterioration to exist before cracks appear. Cracking can occur
in both hardened and fresh, or plastic, concrete as a result of volume changes and repeated loading.
This involves tensile stresses being loaded onto the concrete, the cracks occurring when the force
exceeds its maximum tensile strength. We at Bluey Technologies maintain that it is
important to understand the reasons why cracking occurs, the type of crack formed, and cracks’ effects
on structural stability. Once you understand these points you can take the appropriate action. This
may mean leaving the crack alone, injecting the crack with an appropriate material, or applying
other suitable repair methods.


It is important to identify the primary concern in regard to any cracking. The main concerns are
whether the cracks are affecting structural integrity, caused by inappropriate design, aesthetically
unacceptable, or reducing durability. You can only identify the primary concern after evaluating a crack


The type of cracking provides useful information to help understand a crack’s effects on structural
stability. Figure 1 presents a summary of the different types of concrete cracks and their possible
causes.A crack’s status is critically important. Active cracks
may require more complex repair procedures that may include eliminating the actual cause of the
cracking in order to ensure a successful long-term repair. Failure to address the underlying cause
may result in the crack’s repair being short-term, making it necessary to go through the same process
again. Dormant cracks are those not threatening a structure’s stability, but those responsible for the
structure must address durability issues and take appropriate action if aesthetics are a priority.
A crack’s environmental conditions influence the extent to which it affects its structure’s integrity.
Greater exposure to aggressive conditions increases the possibility of structural instability.
Cracks’ sizes range from micro-cracks that expose the concrete to efflorescence to larger cracks caused
by external loading conditions. Noting cracks’ sizes, shapes, and locations can aid in determining their
initial causes. Figure 2 illustrates the types of cracks and their primary causes in relation to their location.


Cracks that form in plastic concrete can be categorized as either plastic shrinkage cracking or
plastic settlement cracking. Both of these types result from the bleeding and segregation process
that occurs when fresh concrete is placed. Such cracks usually appear from one to six hours after
concrete placement.

Figure 1


As the concrete’s heavier particles settle due to gravity, they push the water and lighter particles
toward the surface. This is called bleeding. If you fail to monitor the temperature, wind, and humidity
conditions properly the evaporation rate of the surface water may exceed the bleed rate, drying
out the concrete’s superficial layer and therefore shrinking it due to dehydration. The concrete
beneath the surface layer is still well hydrated, however, and maintains its volume. This applies
opposing tensile forces to the lower part of the drying concrete on the surface, causing a cracked
concrete profile.

These plastic shrinkage cracks are usually shallow
and only from 1 to 2 mm in width, which means you cannot repair them with the injection method.
They may, however, self-heal through continual cement hydration or by the precipitation of calcium
carbonate from the concrete.

If the cracks are wider than 2 mm and do not self-heal, it is important that you repair them
with a suitable coating or flood-grouting product to stop them from penetrating the full depth of
the concrete slab. If they do become active their reaction to stresses may result in further cracking
that weakens the structure either directly or by exposing its reinforcement steel to contaminants
that will in time corrode it.


The settlement process is a major factor in concrete’s strength at different levels as it forms. Plastic
settlement cracking can occur as a result of such restraints to the consolidation of the fresh concrete as
the use of steel reinforcing bars or formwork. Figure 2 illustrates how plastic settlement cracks
form. As the concrete bleeds, the water works its way to the surface. Sedimentation then occurs as
the aggregate and cement move downwards under the force of gravity. This separation forms a weaker
layer of concrete near the surface. If such restraints as steel reinforcing bars are close to the surface and
insufficiently covered with concrete the concrete bends back around the restraint and cracks at the
apex. Deeper sections of concrete lead to greater separation between the sediment and the water, so
it is important to ensure that you cover all superficial restraints adequately to reduce the amount of

Plastic settlement cracks may also occur in forms involving a sudden change in the concrete’s depth, as
it settles more in the deep sections than the shallow ones, forcing cracking at the point of change. A good
example of this is waffle troughs, in which the depth changes constantly across the length of the form.

Figure 2


Cracking in hardened concrete can result from any one of many causes. These causes include (a) drying shrinkage,
which is the main cause, (b) thermal stresses, (c) chemical reactions, (d) weathering, which involves heating and
cooling and is linked to thermal stresses, (e) the corrosion of steel reinforcing, (f) poor construction practices, (g)
construction and structural overloads, (h) errors in design and detailing, (i) externally applied loads, and (j) poor
loading and storage practices.

It is important to understand the factors that influence the above causes of cracking in order to eliminate the
cause and select the correct repair method. The following sections explore the causes of cracking in hardened
concrete in more depth.


This is the main cause of cracking in hardened concrete. This cracking takes place near the restraints
due to volume changes in the concrete. When concrete is exposed to moisture it swells and when it
is exposed to air with relatively low humidity it shrinks, such air drawing water out of its cement paste, which
is cement and water. If the shrinkage could occur without restraint no cracking would result, but in most
cases the requirements of structural support makes this impossible.

This cracking is the result of a combination of factors that influence the magnitude of the tensile stresses
that cause it. These factors include the amount and rate of shrinkage, the degree of restraint, the modulus
of elasticity, and the amount of creep. Additional factors to be aware of include the type of aggregate,
water content, binder type, and the concrete’s mix proportions and mechanical properties.

The amount and type of aggregate and the cement paste are the main influences on the amount of drying
shrinkage. To minimise the amount of shrinkage it is best to use a stiff aggregate in high volumes relative
to the cement paste. The rate of shrinkage increases with the volume of cement paste. The aggregate
provides internal restraints to shrinkage. Similarly, increases in the ratio of water to cement in the cement
paste increase the level of shrinkage by increasing the potential for volume loss through water evaporation.
The optimum condition for preventing drying shrinkage is a relative humidity of 100%. This is
rarely possible, so sealing the concrete surface to prevent moisture loss can control the amount
of shrinkage, and the use of suitably spaced contraction joints and proper steel detailing allows
shrinkage to occur in a controlled manner. Bluey Technologies’ BluCem range contains
shrinkage-compensating cements that you can also use to control the degree of concrete shrinkage.

Figure 3

As the outside of the concrete cools more quickly than the inside it shrinks,
and the pressure caused by the inner section’s lack of shrinkage produces
tensile stresses that, when exceeding the concrete’s tensile strength, cause the
concrete to crack to relieve the pressure.

Figure 4


Volume differentials are likely to develop in the concrete when different temperatures occur across
a concrete section. The concrete then cracks when the tensile stresses imposed by a change in volume
differential exceed that of its tensile strength. Thermal stresses usually cause cracking in mass
concrete structures, the main cause of the temperature differentials being the influence of the
heat of hydration on volume change. The heat of hydration is the amount of heat released during the
cement’s hydration, causing a temperature differential to occur between the concrete structure’s centre and
exterior as a result of either greater exterior cooling or greater heat hydration in the centre (see Figure 4).
Either situation puts increased pressure on the exterior as the heat tries to escape from the core.


Chemical reactions in concrete can be due to the materials used to make it or materials that may have
come into contact with it after it has hardened. The cause of the cracking is the expansive reactions
between the aggregate and the alkalis in the cement paste. The chemical reaction occurs between active
silica and alkalis, producing an alkali-silica gel as a by-product. The alkali-silica gel forms around the
surface of the aggregate, increasing its volume and putting pressure on the surrounding concrete. This
increase in pressure can cause the tensile stresses to increase beyond the concrete’s tensile strength.
When this occurs the concrete cracks to relieve the pressure.


Three conditions must be present for metals to corrode. These are an oxygen supply, moisture,
and an electron flow within the metal. Eliminating or limiting any of these conditions eliminates or
reduces corrosion of concrete’s steel reinforcement, thereby reducing the risk of cracking.

Concrete usually provides passive protection to the steel as it forms a protective oxide coating around
it in an alkaline environment. However, corrosion may occur if carbonation alters the concrete’s levels
of alkalinity.

Corroding reinforcement steel produces iron oxides
and hydroxides as by-products. As these form on the steelworks surface its volume increases. This
increase in volume increases the pressure on the concrete and causes radial cracking as the concrete
fails under the tensile stresses. It is important to address these cracks because as they become larger
oxygen and moisture have a greater chance of penetrating the concrete and accelerating the reinforcement steel corrosion.


Numerous poor construction practices can initiate cracking in concrete structures. The following table presents these poor

Poor Construction Practices


It is important to pay close attention to the way you load, transport, and unload pre-cast concrete,
and how you secure it in place. At any one of these stages the pre-cast concrete modules can become
subject to stresses that overload their structure. If these stresses occur in the concrete’s early ages
they may result in permanent cracks. You need to employ lifting procedures that disperse the load
across the structure in order to reduce the risk of overload stresses.

Pre-tensioned beams may present cracking problems at the time of stress relief, especially in
beams that are less than one day old.

You need to pay particular attention to the storage
of materials and operational equipment during the construction phase, as these may generate loads
that exceed those that the structure was designed to withstand.


Numerous problems can occur due to incorrect design and detailing, including increased
concentrations of stress from poorly designed re-entrant corners, cracking due to inadequate
reinforcement, and excessive differential movement from improper foundation design. It is therefore
important to ensure that the design and detailing are specific to the particular structure and the
loads to which it will be exposed. Overlooking these points may result in cracking, causing a major
serviceability problem.


Most concrete structures are susceptible to external loads that induce tensile stresses through
their concrete members. It is important to deal with these loads in the most effective way, so try
to disperse the load evenly across the individual members to reduce the risk of uncontrolled
cracking. Factors that can reduce cracks’ widths are an increased amount of steel reinforcement and
larger concrete sections to disperse the loads more evenly.


Once you understand the cause and significance of the cracking you need to apply the appropriate
repair method or methods. You should select the repair method based on an evaluation of the
crack and the repair’s objective or objectives. Such objectives include (a) restoring or increasing
strength, (b) restoring or increasing stiffness, (c) improving functional performance, (d) providing
watertightness, (e) improving the concrete surface’s appearance, (f) improving durability, and
(g) preventing the development of a corrosive environment for the reinforcement.
For detailed guidelines for the preparation and application of crack-repair methods related to Bluey
Technologies products please refer to the relevant documentation.