Creep of Concrete Under the Nanoscope

Texture Crack Concrete

Understanding the Underlying Mechanisms of Creep in Concrete

Concrete is one of the main materials utilized in civil engineering construction in the modern age with an annual production of roughly 20 billion tons. For instance, the aging infrastructure in the US requires massive investment and the American Society of Civil Engineers estimates an expenditure of $4.5 trillion by 2025 to fix the country’s roads, bridges, dams and other infrastructure. By understanding the underlying mechanisms of creep in concrete, we can move closer to designing a more durable material that does not incur such astronomical costs after a short service period.

SmartRock™ Plus Sensor
*For eligible new customers only

Get a Free Trial Kit

  • Free Sensor*
  • Free Shipping
  • No Strings

With this objective in mind, the AIMS lab at UC Irvine has been focused on breaking time and length scale barriers in modeling of cementitious materials. Although various phenomenological models are currently available in the literature and construction codes for prediction of creep, these models are based on parametrization of assumed functional forms, none of which take into account the origins of the behavior at smaller scales. Neglect of this important component can result in a significant difference between observed and calculated values for creep and has caused several catastrophic failures around the world due to excessive time-dependent deformations (such as the collapse of KB bridge in 1996).

Introducing New Techniques

To understand the processes that result in creep of concrete, a new simulation technique has been developed at AIMS lab in UC Irvine that is capable of bridging the disconnect in time-scale between the nanoscopic and macroscopic scales in atomistic models of cement. We begin by constructing a realistic model of hydrated cement at nanoscopic scales. This entails introducing defects into the structure of tobermorite mineral which is a natural analogue of hydrated cement. The next challenge is the choice of forcefield for the simulations. Fortunately previous research provides a set of parameters called CSH-FF, which is a transferable forcefield designed for modeling cementitious materials.

After such preparations we utilize tools from molecular dynamics and statistical physics and begin simulating the evolution of the atomistic system. However, the dynamic trajectory is limited to an extremely small fraction of a second (about a few picoseconds). To overcome this limitation, we designed a three-staged procedure that accelerates the evolution of the system. By applying small shear perturbations, and monitoring various thermodynamic properties (such as energy, pressure, etc), we observed that in the absence of external stress, the system keeps evolving into more stable states (Stage I). However, when a constant shear stress is provided, a gradual evolution in shear strain is observed (Stage II). Finally in the third stage, the system is unloaded and by continued cycling, we see that the system obtains energy values similar to the end of the second stage.

Interpreting the Findings

We found that the first stage can be interpreted as relaxation of the system while the second and third stages point to a viscoelastic behavior of the system. By utilizing the developed method, our simulations were able to clarify, for the first time, a viscoelastic behavior at the nanoscale. Moreover, in the last part, we showed that by increasing the water in the nanopores of hydrated cement, a gradual transition from asymptotic viscoelastic behavior to logarithmic creep is observed which is in agreement with experiments. This can be attributed to a transition from behavior originating at the nanoscale to properties rooted in the mesoscopic attributes of the material.

As for the future of our research, we hope to soon be able to construct an accurate mesoscopic model of hydrated cement and explore various properties that originate from material’s mesotexture. This would not only provide a truly bottom-up model for cementitious materials, but also provide clues that could finally help with solving the mystery of creep of concrete that has occupied many scientists’ minds for decades.

The results of our research were published in a paper titled “Nanoscale origins of creep in calcium silicate hydrates” in Nature Communication. We were honored to receive Giatec’s best paper award for this publication. This shows the company’s understanding of the critical role fundamental research plays in moving the cement industry forward. We hope that our findings can pave the way to a more environmentally friendly concrete which is a global challenge of our time.

Ali Morshedifard is a graduate student of Civil Engineering at the University of California, Irvine. He can be contacted at

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Articles

giatec award for best paper

Giatec Award for Best Paper

We are very excited to announce the launch of our annual research paper contest! This is a great opportunity for civil-engineers to expose their research and development to a global audience of industry experts. Plus, the…

Schematic representation of service-life stages for structures exposed to chloride-induced corrosion risk

Analyzing Corrosion in Reinforced Concrete Structures

Reinforced concrete structures have shaped our cities for thousands of years, from historical buildings stretching as far back as the Romans to present day, such as the 3-storey parking garage adjacent to the mega shopping mall…

Concrete Robot

Concrete-Eating Robots – The Future of Recycling Old Buildings

The process of demolishing a building involves heavy machinery to crush concrete and separate valuable materials that can be reused. Current methods consume quite a significant amount of time and money in order to safely disassemble the building, extract parts, and transport the materials to off-site centers…


Why Measure Concrete Resistivity?

Concrete is a porous material which contains microscopic voids known as pores. These pores range in size, vary in connectivity (pore structure) and can be added to the concrete via air-entraining admixtures. The water-to-cementitious material and…

completed road

Open Roads Sooner with Concrete Curing Sensors

Road construction can be a lengthy, disruptive process—so ensuring that your project stays on schedule is one of your most important responsibilities as a project manager. *For eligible new customers only Get a Free Trial Kit…

We use cookies to provide you with a better experience, analyze site traffic and assist in our marketing efforts. By continuing to use this website, you consent to the use of cookies in accordance with our Privacy Policy Page.