Giatec Surf™

Giatec Surf ™ est un dispositif de test de laboratoire pour la mesure rapide, facile et précis de la surface de la résistivité électrique du béton basé sur la technique de quatre-sonde (Wenner-Array). La technologie brevetée Surf ™ mesure automatiquement la résistivité autour de l'échantillon de béton en utilisant quatre canaux de réseau 4-sonde (situé à 90° par rapport à l'autre). Le logiciel PC génère les rapports requis conformément aux spécifications standards.

Surf ™ peut être utilisé pour déterminer la perméabilité de chlorure de béton conformément à la norme AASHTO TP95 et la prochaine norme ASTM. Les données de mesure peuvent être utilisées pour le contrôle de qualité basé sur la durabilité du béton ainsi que la conception de la durée de vie des structures en béton.

Surf_Surface_Electrical_Resistivity_1 Surf_Surface_Electrical_Resistivity_2 Surf_Surface_Electrical_Resistivity_3 Surf_Surface_Electrical_Resistivity_4 Surf_Surface_Electrical_Resistivity_5
La résistivité électrique du béton est bien en corrélation avec des paramètres de durabilité importante telle que la perméabilité, la diffusivité et les caractéristiques générales de la microstructure de béton. C'est une méthode rapide et facile de contrôle de la qualité au cours de la construction neuve.

Surf ™ est un dispositif unique pour mesurer automatiquement des 4 canaux de résistivité appropriée pour étudier les propriétés de structure de béton, y compris:
  • Durabilité basée sur le contrôle de la qualité du béton
  • Diffusion de chlorure dans le béton
  • Temps de prise du béton frais
  • La détection de fissures dans le béton
  • La teneur en eau du béton frais
  • La technologie brevetée
  • Le seul appareil sur le marché entièrement compatible à la fois avec AASHTO T95 et la prochaine norme ASTM
  • Facile à utiliser (voir la démo sur Youtube)
  • Fréquence variable (13 à 100 Hz)
  • Gamme résistivité large (0,1 - 1,000 kΩ.cm)
  • Mesure rapide (8 mesures <15s)
  • Quatre canaux mesurent quatre sondes
  • Limiter la perte d'humidité
  • Génération automatique de rapports avec le logiciel PC
  • Essais sur le béton frais/application de detection de fissures s
  • Le mode de mesure en continu
  • Connexion USB à l'ordinateur
AASHTO TP 95-11 prévoit la norme d'essai pour la mesure de résistivité électrique surface. Une norme ASTM est également en cours de développement pour ce test. Une copie de la spécification de test AASHTO intitulé «Méthode d'essai normalisée pour la résistance de surface indication de la capacité de béton pour résister à ions chlorure pénétration» peut être obtenu à partir d’ici.
Générale
Distance de Lecture Gamme de Fréquences Précision
0.1 – 100 KΩ.cm 13 – 100 Hz ± (0.1+1%)
100 – 1000 KΩ.cm 13 – 100 Hz ± (1+1%)


Temps de Mesure
Fréquence Temps de mesure unique Durée de l'essai (8 mesures)
13 – 100 Hz 1.5 secondes <15 secondes


Les Conditions d'Exploitation
Catégorie Valeur
Température de fonctionnement 15 ~ 45 °C
Humidité de fonctionnement 30 ~ 80%
Température de stockage 0 ~ 60°C
Tension/courant d'operation 100-250 V ± 10%, 60Hz
Dimensions de Surf™ 200 x 160 x 70 mm
Numero de Pièce Article Description
900037 Surf™- D100 Paquet Complète Appariel SURF™, 100 x 200 mm (4 "x 8") de support de l'échantillon, Adaptateur Secteur, Câble USB, Logiciel de Communication, Manuel d'Utilisation, Gel Conducteur
900030 Appariel Surf™ Surf™ unit, Adaptateur Secteur, Câble USB, Logiciel Communication, Mode d'Emploi

Les pièces de rechange suivantes sont disponibles sur demande:

Numero de Pièce Article Description
900031 Échantillon de surface support-D100 100x200 mm (4 "x8") taille de l'échantillon, gel conducteur
900032 Kit de vérification Gamme Haute et Basse
900038 Gel Conducteur - Viscosité Haute Flacon de 250 ml
900033 Éponge Contacter Câble de raccordement à quatre points avec pince crocodile
900034 Éponge Contacter 16 pcs
Q1: Est-il nécessaire d'utiliser des éponges humides pour la mesure de la résistivité en utilisant Surf™?
R: Si vous testez échantillons secs de surface saturés (SSD état), il n'est pas nécessaire d'utiliser des éponges humides. Mais, pour les échantillons secs, vous devez utiliser des éponges humides sur les conseils de connexion ou le gel conducteur fourni avec l'appareil.

Q2: Comment est-ce que Surf ™ effectuer des mesures rapides?
R: Giatec Surf ™ utilise une technologie brevetée pour mesurer automatiquement la résistivité de surface 8 fois autour de l'échantillon cylindrique en béton à l'aide de ses quatre canaux de tableaux 4 sondes. Le logiciel PC génère ensuite les rapports requis conformément aux spécifications standards.

Q3: Pouvez Surf ™ être utilisé pour les essais de terrain sur béton durci, ou c'est seulement pour une utilisation en laboratoire?
R: La version actuelle de Surf ™ a été conçue pour les applications de laboratoire dans le contrôle de la qualité du béton durabilité basée. Un accessoire est en cours de développement pour Surf ™ qui permet à ce dispositif pour les applications sur le terrain aussi bien.

Q4: Comment puis-je utiliser Surf ™ pour d'autres applications?
R: Les quatre canaux d'entrée de Surf ™ peut être connecté à des câbles auxiliaires pour la personnalisation de test configuré pour mesurer le surface de résistivité à partir de la surface d'éléments en béton (par exemple la détection de fissures sous charge) ou être incorporé dans le béton frais et durci pour la surveillance de réglage et d'humidité, respectivement. L'équipe scientifique de Giatec sera heureux de vous aider avec votre demande de projet de recherche particulier.

  1. Hammond, E., & Robson, T. D. (1955). Comparison of Electrical Properties of Various Cements and Concretes. The Engineer (London), 199(5165) 78-80, and 199(5166), 114-115.
  2. Nikkanen, P. (1962). On the Electrical Properties of Concrete and Their Applications. Vaftion Tebsilliren Tutkirndaitos, Tiedotus, Sarja III, Rakennus 60, 75 pages. In Finnish with English summary.
  3. Henry, R. L. (1964). Water Vapor Transmission and Electrical Resistivity of Concrete. Final Report. U. S. Naval Civil Engineering Laboratory, Port Hueneme, California, Technical Report,R-314, 39 pages.
  4. Tobio, J. M. (1959). A Study of the Setting Process, Dielectric Behavior of Several Spanish Cements. Silicates Zrrdrcsb-iek, 24, 30-35 and 81-87.
  5. Power, T. C. (1958). Structure and Physical Properties of Hardened Portland Cement Paste. Journal of the American Ceramic Society, 41(1), 1-6; PCA Research Department, Bulletin 94.
  6. Jones, G., & Christian, S. M. (1935). The Measurement of the Conductance of Electrolytes. VI. Galvanic Polarization by Alternating Current. Journal of the American Chemical Society, 57, 272-280.
  7. Terry, E. M. (1929). ADVANCED LABORATORY PRACTICE IN ELECTRICITY AND MAGNETISM, 2nd Edition, McGraw-Hill, N.Y., 197.
  8. Fricke, H. (1931). The Electric Conductivity and Capacity of Disperse Systems. Physics, 1(2), 106-115.
  9. Frcitag, F. E. (1959). (Dyckerhoff and Widmann Kommanditgesellschaf t). Increasing the Electrical Resistance and Strength of Concrete. German Patent No. 1,064,863. In German. See abstract in English in Chemical Abstracts, 55(8), 7798d.
  10. Budnikov, P. P., & Strelkov, M.I. (1966). Some Recent Concepts on Portland Cement Hydration and Hardening. SYMPOSIUM ON STRUCTURE OF PORTI.AND CEMENT PASTE AND CONCRETE, Highway Research Board Special Report 90, Table 3, 450.
  11. Seligmann, P. (1968). Nuclear Magnetic Resonance Studies of the Water in Hardened Cement Paste. Journal of the PCA Research and Development Laboratories, 10(1), 52-65; PCA Research Department Bulletin 222.
  12. Monfore, G. E., & Verbeck, G. J. (1960). Corrosion of Prestressed Wire in Concrete. Journal of the American Concrete Institute; Proceedings, 57, 491-515; PCA Research Department Bulletin 120.
  13. Monfore, G. E., & Ost, B. (1965). Corrosion of Aluminum Conduit in Concrete. Journal of the PCA Research and Development Laboratories, 7(1), 10-22; PCA Research Department Bulletin 173.
  14. Andrade, C. (2010). Types of Models of Service Life of Reinforcement: The Case of the Resistivity. Concrete Research Letters, 1(2), 73- 80.
  15. Bertolini, L., & Polder, R. B. (1997). Concrete Resistivity and Reinforcement Corrosion Rate as a Function of Temperature and Humidity of the Environment. TNO report 97-BT-R0574, Netherland.
  16. Bryant, J. W., Weyers, R. E., & Garza, J. M. (2009). In-Place Resistivity of Bridge Deck Concrete Mixtures. ACI Materials Journal, 106(2), 114-122.
  17. Buehlef, M. G. & Thurber, W. R. (1976). A Planar Four-Probe Structure for Measuring Bulk Resistivity. IEEE Transactions on Electron Devices, 23(8), 968-974.
  18. Butefuhr, M., Fischer, C., Gehlen, C., Menzel, K., & Nurnberger, U. (2006). On-Site Investigation on Concrete Resistivity a Parameter of Durability Calculation of Reinforced Concrete Structures. Materials and Corrosion, 57(12), 932-939.
  19. Chatterji, S. (2005). A Discussion of the Papers, ''A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 1 and Part 2'' by K. Stanish, R.D. Hooton, M.D.A. Thomas. Cement and Concrete Research, 35(9), 1865-1867.
  20. Chini, A. R., Muszynski, L. C., & Hicks J. (2003). Determination of Acceptance Permeability Characteristics for Performance-Related Specifications for Portland Cement Concrete. Final report submitted to FDOT (MASc. Thesis), University of Florida, Department of Civil Engineering.
  21. Edvardsen, C. (2002). Chloride Migration Coefficients from Non-Steady-State Migration Experiments at Environment-Friendly “Green” Concrete. Retrieved from www.gronbeton.dk/artikler/Chloride%20migration%20coefficients.pdf.
  22. Elkey, W. & Sellevold E. J. (1995). Electrical Resistivity of Concrete. Published Report, No. 80, Norwegian Road Research Laboratory, Oslo, Norway, 36 pages.
  23. Ewins, A. J. (1990). Resistivity Measurements in Concrete. British Journal of NDT, 32(3), 120-126.
  24. Feliu, S., Andrade, C., Gonzalez, J. A., & Alonso, C. (1996). A New Method for In-situ Measurement of Electrical Resistivity of Reinforced Concrete. Materials and Structures, 29(6), 362-365.
  25. Ferreira, R. M., & Jalali, S. (2010). NDT Measurements for the Prediction of 28-day Compressive Strength. NDT & E International, 43(2), 55-61.
  26. Florida DOT FM 5-578. (2004). Method of Test for Concrete Resistivity as an Electrical Indicator of Its Permeability, 226.
  27. Forster, S.W. (2000). Concrete Durability-Influencing Factors and Testing. Farmington Hills, MI. Durability of Concrete, ACI Committee, Vol. 191, 1-10.
  28. Gowers, K. R. & Millard, S. G. (1999). Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique. ACI Material Journal, 96(5), 536-541.
  29. Hansson, I. L. H. & Hansson, C. M. (1953). Electrical Resistivity Measurements of Portland Cement Based Materials. Cement and Concrete Research, 13(5), 675-683.
  30. Hooton, R.D., Thomas, M.D.A., & Stanish, K., (2001). Prediction of Chloride Penetration in Concrete. Federal Highway Administration, Report No. FHWA-RD-00-142.
  31. Ishida, T., & Li, C. H. (2008). Modeling of Carbonation Based on Thermo-Hygro Physics with Strong Coupling of Mass Transport and Equilibrium in Micro-pore Structure of Concrete. Retrieved from http://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter14/isida.pdf
  32. Jianyong, L., & Pei, T. (1997). Effect of Slag and Silica Fume on Mechanical Properties of High Strength Concrete. Cement and Concrete Research, 27(6), 833-837.
  33. Kosmatka, S. H., Kerkhoff, B., Panarese, W. C., MacLeod, N. F., &McGrath, R. J. (2002). Design and Control of Concrete Mixtures, Seventh Canadian Edition. Cement Association of Canada, 227.
  34. Kessler, R. J., Power, R. G., & Paredes, M. A. (2005). Resistivity Measurements of Water Saturated Concrete as an Indicator of Permeability. Corrosion 2005, Houston, TX, 1-10.
  35. Kessler, R. J., Power, R. G., Vivas, E., Paredes, M. A., & Virmani, Y.P. (2008). Surface, Resistivity as an Indicator of Concrete Chloride Penetration Resistance. Retrieved from http://concreteresistivity.com/Surface%20Resistivity.pdf
  36. Lataste, J. F., Sirieix, C., Breysse, D., & Frappa M. (2003). Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering. NDT & E International, 36(6), 383-394.
  37. Lopez, W., & Gonzalez, J. A. (1993). Influence of the Degree of Pore Saturation on the Resistivity of Concrete and the Corrosion Rate of Steel Reinforcement. Cement and Concrete Research, 23(2), 368-376.
  38. McCarter, W. J., Starrs, G., Kandasami, S., Jones, R., & Chrisp, M. (2009). Electrode Configuration for Resistivity Measurements on Concrete. ACI Materials Journal, 106(3), 258-264.
  39. Millard, S. G., Harrison, J. A., & Edwards, A. J. (1989). Measurements of the Electrical Resistivity of Reinforced Concrete Structures for the Assessment of Corrosion Risk. British Journal of NDT, 13(11), 617-621.
  40. Millard, S. G. & Gowers, K. R. (1991). The Influence of Surface Layers upon the Measurement of Concrete Resistivity. Durability of Concrete, Second International Conference, ACI SP-126, Montreal, Canada, 1197-1220, 228.
  41. Monfore, G. E. (1968). The Electrical Resistivity of Concrete. Journal of the PCA Research Development Laboratories, 10(2), 35-48.
  42. Monkman, S. & Shao, Y. (2006). Assessing the Carbonation Behaviour of Cementitious Materials. Journal of Materials in Civil Engineering, 18(6), 768-776.
  43. Morris, W., Moreno, E. I., & Sagues, A. A. (1996). Practical Evaluation of Resistivity of Concrete in Test Cylinders Using A Wenner Array Probe. Cement and Concrete Research, 26(12), 1779-1787.
  44. Newlands, M. D., Jones, M. R., Kandasami, S., & Harrison T. A. (2008). Sensitivity of Electrodes Contact Solutions and Contact Pressure in Assessing Electrical Resistivity of Concrete. Materials and Structures, 41(4), 621-632.
  45. Nokken, M. R. & Hooton, R. D. (2006). Electrical Conductivity as a Prequalification and Quality Control. Concrete International, 28(10), 61-66.
  46. Parrott, L. J. (1994). Moisture Conditioning and Transport Properties of Concrete Test Specimens. Materials and Structures, 27(8), 460-468.
  47. Polder, R. B. (2001). Test Methods for on Site Measurement of Resistivity of Concrete – a RILEM TC-154 Technical Recommendation. Construction and Building Materials, (15)2-3, 125-131, 229.
  48. Pun, P., Kojuncdic, T., Hooton, R.D., Kojundic, T., & Fidjestol P. (1997). Influence of Silica Fume on Chloride Resistance of Concrete. Proceedings of PCI/FHWA International Symposium on High Performance Concrete, New Orleans, Louisiana, 245–256.
  49. RILEM Technical Committee. (2005). Update of the Recommendation of RILEM TC 189-NEC Non-destructive Evaluation of the Concrete Cover (Comparative Test Part I, Comparative Test of Penetrability Methods). Materials & Structures, 38(284), 895-906.
  50. Savas B. Z. (1999). Effect of Microstructure on Durability of Concrete (PhD Thesis). North Carolina State University, Department of Civil Engineering, Raleigh NC.
  51. Sengul, O. & Gjorv, O. E. (2008). Electrical Resistivity Measurements for Quality Control During Concrete Construction. ACI Materials Journal, 105(6), 541-547.
  52. Sengul, O. & Gjorv, O. E. (2009). Effect of Embedded steel on Electrical Resistivity Measurements on Concrete Structures. ACI Materials Journal, 106(1), 11-18.
  53. Scrivener, K. L., Crumbie, A. K., & Laugesen P. (2004). The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interface Science, 12(4), 411- 421, 230.
  54. Shi, C. (2004). Effect of Mixing Proportions of Concrete on its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results. Cement and Concrete Research, 34(3), 537-545.
  55. Smith, K. M., Schokker, A. J., & Tikalsky P. J. (2004). Performance of Supplementary Cementitious Materials in Concrete Resistivity and Corrosion Monitoring Evaluations. ACI Materials Journal, 101(5), 385-390.
  56. Stanish, K., Hooton, R. D., & Thomas, M. D. A. (1997). Testing the Chloride Penetration Resistance of Concrete: A Literature Review. Department of Civil Engineering University of Toronto, Ontario, Canada. FHWA Contract DTFH61-97-R 00022. Prediction of Chloride Penetration in Concrete.
  57. Stanish, K., Hooton, R. D., & Thomas, M. D. A. (2004). A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 1. Theoretical description. Cement and Concrete Research, 34(1), 43-49.
  58. Stanish, K., Hooton, R. D., & Thomas M. D. A. (2004). A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 2. Experimental study. Cement and Concrete Research, 34(1), 51-57.