Giatec Surf™

Giatec Surf™ 运用四探针(温纳阵列)技术,能方便快捷地测量混凝土体表电阻。 Surf™ 的核心专利技术是使用的相隔90°并均匀排列的四组独立探头,自动测量混凝土试件周围的电阻。相关电脑软件可生成符合行业标准的数据报告。

Surf™ 适用于现行的AASHTO TP95和即将出台的ASTM标准,用于确定混凝土中氯离子渗透性能。测量数据可用于基于耐久性的混凝土质控,以及混凝土结构使用寿命的预测。

Surf_Surface_Electrical_Resistivity_1 Surf_Surface_Electrical_Resistivity_2 Surf_Surface_Electrical_Resistivity_3 Surf_Surface_Electrical_Resistivity_4 Surf_Surface_Electrical_Resistivity_5
在混凝土材料中,电阻率与混凝土的耐久性参数紧密相关,如渗透性、扩散性以及其微结构的特征等。 测量电阻率是对新建筑进行质控最便捷有效的方法。

Surf™ 装置的独特之处在于,它通过四组拥有独立通道的探头,自动收集表面电阻数据,来评定微结构及如下系数对混凝土性能的影响:
  • 基于耐久性的混凝土质控
  • 氯离子在混凝土中的扩散
  • 新拌混凝土的凝结时间
  • 混凝土裂缝检测
  • 新拌混凝土中的水含量
  • 专利技术
  • 目前市场上唯一符合AASHTO T95 和即将出台的ASTM标准的产品
  • 操作简易(请见Youku使用演示视频)
  • 可变频率(13 - 100 Hz)
  • 快速测量(8组测量值<15秒)
  • 四通道四探针测量
  • 电脑软件可自动生成数据报告
  • 可应用于新拌混凝土测试/裂纹检测
  • 连续测量模式
  • USB连接配件(可选)
AASHTO TP 95-11提供表面电阻率测量的测试标准。ASTM标准也正在研发这个测试。 您可点击这里查看AASHTO名为“表面电阻指示混凝土的抗氯离子渗透”的测试规范 。
技术规格
读取范围 频谱 精确度
0.1 – 100 KΩ.cm 13 – 100 Hz ± (0.1+1%)
100 – 1000 KΩ.cm 13 – 100 Hz ± (1+1%)


测量时间
频率 单次测量时间 整体测量时间 (8 组)
13 – 100 Hz 1.5 秒 <15 秒


工作条件
类型 数值
工作温度 15 ~ 45 °C
工作湿度 30 ~ 80%
储存温度 0 ~ 60°C
工作电压/电流 100-250 V ± 10%, 60Hz
工作电压/电流 200 x 160 x 70 mm
编号 名称 说明
900037 Surf™ - D100 套装 Surf™ 测量仪,100x200 mm (4"x8") 样品固定器,电源适配器,USB通讯电缆,Surf™数据软件,用户手册,传导凝胶
900030 Surf™ 测量仪 Surf™ 测量仪,电源适配器,USB通讯电缆,Surf™数据软件,用户手册

如需以下配件请另外注明:

编号 名称 说明
900031 样品固定器 - 表电阻D100 样品大小100x200 mm (4"x8"),传导凝胶
900032 检验工具包 高、低电阻率范围
900038 检验工具包 - 高粘度 250ml瓶装
900033 测试线 带鳄鱼夹的四点式连接线
900034 海绵垫 16片
问题1:Surf™ 需要用到湿海绵来测量电阻率吗?
解答: 如果您的测量样品表面处于干饱和状态(SSD),则不需要使用湿海绵。如果只是干的样品,则需要使用配套的湿海绵或传导胶。

问题2:Surf™ 如何提高测量速度 ?
解答:Surf™ 采用四通道四探针阵列测量技术。运用独家专利技术,自动在圆柱形混凝土试件周围进行8组电阻率的测量。然后配套的PC软件可按照行业标准规定,生成合格的数据报告。

问题3:Surf™ 可以用于硬化混凝土的现场检验吗,还是限于实验室使用?
解答: 目前,Surf™ 仅限于混凝土耐久性质控实验室的使用。Giatec团队正在研发相关配件,将使Surf™胜任现场测量。

问题4:Surf™ 还有哪些其他用途?
解答: Surf™ 的四个测量通道可与配套电缆连接,用于测量特定的混凝土表面电阻率(如负载状况下的裂纹检测),也可沁入新鲜或硬化的混凝土分别监测设置与水分的输送。Giatec的科研团队愿为您科研项目中的相关应用提供帮助。

  1. Hammond, E., & Robson, T. D. (1955). Comparison of Electrical Properties of Various Cements and Concretes. The Engineer (London), 199(5165) 78-80, and 199(5166), 114-115.
  2. Nikkanen, P. (1962). On the Electrical Properties of Concrete and Their Applications. Vaftion Tebsilliren Tutkirndaitos, Tiedotus, Sarja III, Rakennus 60, 75 pages. In Finnish with English summary.
  3. Henry, R. L. (1964). Water Vapor Transmission and Electrical Resistivity of Concrete. Final Report. U. S. Naval Civil Engineering Laboratory, Port Hueneme, California, Technical Report,R-314, 39 pages.
  4. Tobio, J. M. (1959). A Study of the Setting Process, Dielectric Behavior of Several Spanish Cements. Silicates Zrrdrcsb-iek, 24, 30-35 and 81-87.
  5. Power, T. C. (1958). Structure and Physical Properties of Hardened Portland Cement Paste. Journal of the American Ceramic Society, 41(1), 1-6; PCA Research Department, Bulletin 94.
  6. Jones, G., & Christian, S. M. (1935). The Measurement of the Conductance of Electrolytes. VI. Galvanic Polarization by Alternating Current. Journal of the American Chemical Society, 57, 272-280.
  7. Terry, E. M. (1929). ADVANCED LABORATORY PRACTICE IN ELECTRICITY AND MAGNETISM, 2nd Edition, McGraw-Hill, N.Y., 197.
  8. Fricke, H. (1931). The Electric Conductivity and Capacity of Disperse Systems. Physics, 1(2), 106-115.
  9. Frcitag, F. E. (1959). (Dyckerhoff and Widmann Kommanditgesellschaf t). Increasing the Electrical Resistance and Strength of Concrete. German Patent No. 1,064,863. In German. See abstract in English in Chemical Abstracts, 55(8), 7798d.
  10. Budnikov, P. P., & Strelkov, M.I. (1966). Some Recent Concepts on Portland Cement Hydration and Hardening. SYMPOSIUM ON STRUCTURE OF PORTI.AND CEMENT PASTE AND CONCRETE, Highway Research Board Special Report 90, Table 3, 450.
  11. Seligmann, P. (1968). Nuclear Magnetic Resonance Studies of the Water in Hardened Cement Paste. Journal of the PCA Research and Development Laboratories, 10(1), 52-65; PCA Research Department Bulletin 222.
  12. Monfore, G. E., & Verbeck, G. J. (1960). Corrosion of Prestressed Wire in Concrete. Journal of the American Concrete Institute; Proceedings, 57, 491-515; PCA Research Department Bulletin 120.
  13. Monfore, G. E., & Ost, B. (1965). Corrosion of Aluminum Conduit in Concrete. Journal of the PCA Research and Development Laboratories, 7(1), 10-22; PCA Research Department Bulletin 173.
  14. Andrade, C. (2010). Types of Models of Service Life of Reinforcement: The Case of the Resistivity. Concrete Research Letters, 1(2), 73- 80.
  15. Bertolini, L., & Polder, R. B. (1997). Concrete Resistivity and Reinforcement Corrosion Rate as a Function of Temperature and Humidity of the Environment. TNO report 97-BT-R0574, Netherland.
  16. Bryant, J. W., Weyers, R. E., & Garza, J. M. (2009). In-Place Resistivity of Bridge Deck Concrete Mixtures. ACI Materials Journal, 106(2), 114-122.
  17. Buehlef, M. G. & Thurber, W. R. (1976). A Planar Four-Probe Structure for Measuring Bulk Resistivity. IEEE Transactions on Electron Devices, 23(8), 968-974.
  18. Butefuhr, M., Fischer, C., Gehlen, C., Menzel, K., & Nurnberger, U. (2006). On-Site Investigation on Concrete Resistivity a Parameter of Durability Calculation of Reinforced Concrete Structures. Materials and Corrosion, 57(12), 932-939.
  19. Chatterji, S. (2005). A Discussion of the Papers, ''A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 1 and Part 2'' by K. Stanish, R.D. Hooton, M.D.A. Thomas. Cement and Concrete Research, 35(9), 1865-1867.
  20. Chini, A. R., Muszynski, L. C., & Hicks J. (2003). Determination of Acceptance Permeability Characteristics for Performance-Related Specifications for Portland Cement Concrete. Final report submitted to FDOT (MASc. Thesis), University of Florida, Department of Civil Engineering.
  21. Edvardsen, C. (2002). Chloride Migration Coefficients from Non-Steady-State Migration Experiments at Environment-Friendly “Green” Concrete. Retrieved from www.gronbeton.dk/artikler/Chloride%20migration%20coefficients.pdf.
  22. Elkey, W. & Sellevold E. J. (1995). Electrical Resistivity of Concrete. Published Report, No. 80, Norwegian Road Research Laboratory, Oslo, Norway, 36 pages.
  23. Ewins, A. J. (1990). Resistivity Measurements in Concrete. British Journal of NDT, 32(3), 120-126.
  24. Feliu, S., Andrade, C., Gonzalez, J. A., & Alonso, C. (1996). A New Method for In-situ Measurement of Electrical Resistivity of Reinforced Concrete. Materials and Structures, 29(6), 362-365.
  25. Ferreira, R. M., & Jalali, S. (2010). NDT Measurements for the Prediction of 28-day Compressive Strength. NDT & E International, 43(2), 55-61.
  26. Florida DOT FM 5-578. (2004). Method of Test for Concrete Resistivity as an Electrical Indicator of Its Permeability, 226.
  27. Forster, S.W. (2000). Concrete Durability-Influencing Factors and Testing. Farmington Hills, MI. Durability of Concrete, ACI Committee, Vol. 191, 1-10.
  28. Gowers, K. R. & Millard, S. G. (1999). Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique. ACI Material Journal, 96(5), 536-541.
  29. Hansson, I. L. H. & Hansson, C. M. (1953). Electrical Resistivity Measurements of Portland Cement Based Materials. Cement and Concrete Research, 13(5), 675-683.
  30. Hooton, R.D., Thomas, M.D.A., & Stanish, K., (2001). Prediction of Chloride Penetration in Concrete. Federal Highway Administration, Report No. FHWA-RD-00-142.
  31. Ishida, T., & Li, C. H. (2008). Modeling of Carbonation Based on Thermo-Hygro Physics with Strong Coupling of Mass Transport and Equilibrium in Micro-pore Structure of Concrete. Retrieved from http://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter14/isida.pdf
  32. Jianyong, L., & Pei, T. (1997). Effect of Slag and Silica Fume on Mechanical Properties of High Strength Concrete. Cement and Concrete Research, 27(6), 833-837.
  33. Kosmatka, S. H., Kerkhoff, B., Panarese, W. C., MacLeod, N. F., &McGrath, R. J. (2002). Design and Control of Concrete Mixtures, Seventh Canadian Edition. Cement Association of Canada, 227.
  34. Kessler, R. J., Power, R. G., & Paredes, M. A. (2005). Resistivity Measurements of Water Saturated Concrete as an Indicator of Permeability. Corrosion 2005, Houston, TX, 1-10.
  35. Kessler, R. J., Power, R. G., Vivas, E., Paredes, M. A., & Virmani, Y.P. (2008). Surface, Resistivity as an Indicator of Concrete Chloride Penetration Resistance. Retrieved from http://concreteresistivity.com/Surface%20Resistivity.pdf
  36. Lataste, J. F., Sirieix, C., Breysse, D., & Frappa M. (2003). Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering. NDT & E International, 36(6), 383-394.
  37. Lopez, W., & Gonzalez, J. A. (1993). Influence of the Degree of Pore Saturation on the Resistivity of Concrete and the Corrosion Rate of Steel Reinforcement. Cement and Concrete Research, 23(2), 368-376.
  38. McCarter, W. J., Starrs, G., Kandasami, S., Jones, R., & Chrisp, M. (2009). Electrode Configuration for Resistivity Measurements on Concrete. ACI Materials Journal, 106(3), 258-264.
  39. Millard, S. G., Harrison, J. A., & Edwards, A. J. (1989). Measurements of the Electrical Resistivity of Reinforced Concrete Structures for the Assessment of Corrosion Risk. British Journal of NDT, 13(11), 617-621.
  40. Millard, S. G. & Gowers, K. R. (1991). The Influence of Surface Layers upon the Measurement of Concrete Resistivity. Durability of Concrete, Second International Conference, ACI SP-126, Montreal, Canada, 1197-1220, 228.
  41. Monfore, G. E. (1968). The Electrical Resistivity of Concrete. Journal of the PCA Research Development Laboratories, 10(2), 35-48.
  42. Monkman, S. & Shao, Y. (2006). Assessing the Carbonation Behaviour of Cementitious Materials. Journal of Materials in Civil Engineering, 18(6), 768-776.
  43. Morris, W., Moreno, E. I., & Sagues, A. A. (1996). Practical Evaluation of Resistivity of Concrete in Test Cylinders Using A Wenner Array Probe. Cement and Concrete Research, 26(12), 1779-1787.
  44. Newlands, M. D., Jones, M. R., Kandasami, S., & Harrison T. A. (2008). Sensitivity of Electrodes Contact Solutions and Contact Pressure in Assessing Electrical Resistivity of Concrete. Materials and Structures, 41(4), 621-632.
  45. Nokken, M. R. & Hooton, R. D. (2006). Electrical Conductivity as a Prequalification and Quality Control. Concrete International, 28(10), 61-66.
  46. Parrott, L. J. (1994). Moisture Conditioning and Transport Properties of Concrete Test Specimens. Materials and Structures, 27(8), 460-468.
  47. Polder, R. B. (2001). Test Methods for on Site Measurement of Resistivity of Concrete – a RILEM TC-154 Technical Recommendation. Construction and Building Materials, (15)2-3, 125-131, 229.
  48. Pun, P., Kojuncdic, T., Hooton, R.D., Kojundic, T., & Fidjestol P. (1997). Influence of Silica Fume on Chloride Resistance of Concrete. Proceedings of PCI/FHWA International Symposium on High Performance Concrete, New Orleans, Louisiana, 245–256.
  49. RILEM Technical Committee. (2005). Update of the Recommendation of RILEM TC 189-NEC Non-destructive Evaluation of the Concrete Cover (Comparative Test Part I, Comparative Test of Penetrability Methods). Materials & Structures, 38(284), 895-906.
  50. Savas B. Z. (1999). Effect of Microstructure on Durability of Concrete (PhD Thesis). North Carolina State University, Department of Civil Engineering, Raleigh NC.
  51. Sengul, O. & Gjorv, O. E. (2008). Electrical Resistivity Measurements for Quality Control During Concrete Construction. ACI Materials Journal, 105(6), 541-547.
  52. Sengul, O. & Gjorv, O. E. (2009). Effect of Embedded steel on Electrical Resistivity Measurements on Concrete Structures. ACI Materials Journal, 106(1), 11-18.
  53. Scrivener, K. L., Crumbie, A. K., & Laugesen P. (2004). The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interface Science, 12(4), 411- 421, 230.
  54. Shi, C. (2004). Effect of Mixing Proportions of Concrete on its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results. Cement and Concrete Research, 34(3), 537-545.
  55. Smith, K. M., Schokker, A. J., & Tikalsky P. J. (2004). Performance of Supplementary Cementitious Materials in Concrete Resistivity and Corrosion Monitoring Evaluations. ACI Materials Journal, 101(5), 385-390.
  56. Stanish, K., Hooton, R. D., & Thomas, M. D. A. (1997). Testing the Chloride Penetration Resistance of Concrete: A Literature Review. Department of Civil Engineering University of Toronto, Ontario, Canada. FHWA Contract DTFH61-97-R 00022. Prediction of Chloride Penetration in Concrete.
  57. Stanish, K., Hooton, R. D., & Thomas, M. D. A. (2004). A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 1. Theoretical description. Cement and Concrete Research, 34(1), 43-49.
  58. Stanish, K., Hooton, R. D., & Thomas M. D. A. (2004). A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 2. Experimental study. Cement and Concrete Research, 34(1), 51-57.