Giatec RCON2™

Giatec RCON2™是一款在实验室中对混凝土电阻率进行无损检测的装置,且检测过程对混凝土样本没有额外的制备要求。 目前用来检测混凝土的抗压强度的样品即适用于此款装置。 检测非常迅速(测量时间少于5秒),精确且可调控(可在不同设置中测量以进行验证)。 RCON2™也支持在一段时间内对电阻率进行连续测量,其数据可用来监测混凝土样本的一些其它参数,如水分含量的变化和凝结时间。  请从这里下载Giatec混凝土检测装置手册了解详情。



在混凝土材料中,电阻率与混凝土的耐久性参数紧密相关,如渗透性、扩散性以及其微结构的特征等。
RCON2™运用独特的变频技术检测混凝土微结构的特性,其中包括:
  • 氯离子扩散
  • 螺纹钢腐蚀
  • 凝结时间
  • 水分转移
  • 固化程度
  • 阴极防蚀设计
  • 迅速(少于5秒)
  • 精确(±2%)
  • 交流电测量 (恒电流)
  • 超宽测量频率范围(1Hz to 30kHz)
  • 相位检测(0 ~ 180°)
  • 支持连续测量
  • 支持单机操作
  • 软件操作简便
  • 可调式样品支托
  • 可自定义的安装程序
  • 可连计算机的USB接口
正在制定中的美国材料与试验协会标准(ASTM)和美国公路和运输官员协会标准(AASHTO),都将在以电阻率作为衡量混凝土其耐久性的重要指数的基础上制定。
总览
识别范围 频谱 相位测量 阻抗精度 相位精度
1 ~100Ω 1Hz ~ 30KHz 0 ~ 180° ± 2% ± 2位数 5 % ± 3位数
100Ω~1000Ω
1 ~10 KΩ
10 ~ 100 KΩ
100 KΩ ~1 MΩ 1Hz ~ 10KHz


测量时间
频率 采样时间 读取时间(最小值)
1 Hz ~ 4 Hz 5 秒 10 秒
5 Hz ~ 30 KHz 1 秒 2 秒


工作条件
类型 数值
工作温度 15 ~ 45 °C
工作湿度 30 ~ 80%
储存温度 0 ~ 60°C
工作电压/电流 100-250 V ± 10%, 60Hz
RCON2™外形尺寸 200 x 230 x 70 mm
编号 名称 说明
900035 RCON2™ - 套装 RCON2™ 测量仪,电源适配器,测试线组,鳄鱼夹,样品固定器,检验工具包,新拌混凝土探头,用户手册,数据软件,USB通讯电缆,传导凝胶,两双海绵垫
900011 RCON2™ 测量仪 RCON2™ 测量仪,电源适配器,测试线组,检验工具包,用户手册,数据软件,USB通讯电缆

如需以下配件请另外注明:

编号 名称 说明
900018 测试线组
900012 检验工具包
900013 样品固定器 - 体电阻 样品固定器,两双海绵垫
900014 海绵垫 D150 - 双
900015 传导凝胶 - 低粘度 250 ml 瓶装
900016 传导凝胶 - 中粘度 250 ml 瓶装
900017 新拌混凝土探头
       Giatec RCON2™能有效地依据对混凝土耐久性能的不同要求,利用电阻率来检测其质量。此装置所需的样品与目前用来检测混凝土抗压强度的样品一致。RCON2™运用交流抗阻技术来持续、快速且准确地从不同的混凝土材料中读取数据,用户只需通过操作简单的软件来进行调控。混凝土的电阻率和混凝土的一些孔隙网特性直接相关,如孔隙的大小和连续性,含水量以及空隙中溶液的化学成分。在混凝土材料中,电阻率与渗透性和扩散性等重要的耐久性参数密切相关。此外,因为检测不会带来任何损坏,使RCON2™可以在混凝土从新拌到硬化的不同阶段进行测试,以研究混凝土的可加工性、凝结度和耐久性能。运用电阻率检测的方法也被应用于检测钢筋混凝土的腐蚀状况,抗蠕变状况,骨料的离析和混凝土的冻结和解冻,因为这些都影响着孔隙网的属性。基于电阻率和混凝土的耐久性能的紧密关联度,混凝土电阻测试很好地取代了美国材料与试验协会(ASTM)C1202标准中混凝土的快速氯离子渗透测试。
问题1: RCON2™可以用于硬化混凝土的现场测试吗,还是它适用于在实验室中使用?
解答: RCON2™是专为实验室和现场应用设计的,它可在现场对不同大小和形状的硬化混凝土样品进行测试。

问题2: 你的网站提到美国材料与试验协会(ASTM)C1202标准和RCON2™的之间的相关性。你有比较这两种技术的数据吗?
解答: 有。氯离子快速渗透试验的结果和通过电阻率测量方法所得到的结果之间存在相关性。请参阅下表比较这两种技术:

快速氯离子渗透性能和体电阻率值
氯离子渗透 极低 可忽略
56天快速氯离子渗透率电荷通过量(Coulombs)* >4,000 2,000-4,000 1,000-2,000 100-1,000 <100
28天饱和混凝土的体电阻率(kΩ.cm) <5 5-10 10-20 20-200 >200
*按美国材料与试验协会(ASTM) C1202标准

问题3: RCON2™测量范围是多少?可测量的最大值为多少(kΩ.cm)?
解答: RCON2™ 的测量范围是1ohm至1Mohm之间。对于10 X 20cm的圆柱形样本,最大测量值约为4,000 kΩ.cm。如需将范围扩展到大约40,000 kΩ.cm, 可使用Giatec提供的高电阻率附件。

问题4: 运行该软件需要怎样的电脑配置?
解答: 运行该软件要求电脑至少配有Pentium4处理器,至少有500 MB 内存,Windows XP或Windows 7或Vista操作系统皆可。

问题5: 用于研发该装置的标准是什么?
解答: RCON2™的开发是基于上即将颁布的美国材料与试验协会(ASTM)标准。美国公路和运输官员协会(AASHTO)标准中有与之类似的对表面电阻率的测量,但其结果没有用RCON2™装置测量体电阻率的结果准确。

问题6: 此装置能测量抗压强度吗?
解答: 不能。 RCON2™可以方便快捷地测量混凝土的电阻率。电阻率是与新拌混凝土的凝结时间、硬化程度等耐用性指数关联最为密切的参数。

问题7: 此设备是否测量混凝土的可持续性?是否测量盐和氯化物渗入?
解答: RCON2™测量的是混凝土的电阻率。此参数可用于评估暴露在指定环境下混凝土的耐用性和可持续性。 Giatec提供另一种名为Perma™的设备,它可用于测量美国材料与试验协会(ASTM)C1202标准中规定的混凝土快速氯离子渗透率。如需此装置的详细资讯,请点击这里

问题8: 在一些国家,用电电压为210-220 V,频率为50 Hz。RCON2™能够适用吗?这种差异会影响到测试结果吗?
解答: RCON2™适用的电压范围为100-250 V,频率范围为50-60Hz。测量结果在以上范围内不会受到任何影响。

问题9: 新拌混凝土探头(配件编号900017)是进行测试必需的吗?它能使测量结果更完善吗?
解答: 新拌混凝土的探头是一个可供选择而非必需的产品,它只在研究混凝土凝结情况时需要。如果您不需要做这类测试,那么您不需要新拌混凝土探头。

问题10: 您的产品如何测量含水量的变化?
解答: 使用经特殊设计的嵌在新拌混凝土中的探头,可通过电阻随时间的变化以测量混凝土样本中的含水量和凝结情况 。该装置的配套软件可以记录这些测量数据。电阻率的变化与实际含水量和混凝土的凝结时间的关联值可通过校准来确定。

问题11: 美国材料与试验协会(ASTM)及美国公路和运输官员协会(AASHTO)标准仍在制定中?
解答: 美国公路和运输官员协会(AASHTO)标准已经发布,您就可以在美国公路和运输官员协会(AASHTO) TP95-11文件中获得更多信息。基于混凝土体电阻率的美国材料与试验协会(ASTM)标准目前正在制定中,不久将会颁布。

问题12: 圆柱型测量筒中只能使用圆柱型的样本吗?我们也可以使用立方体型的样品(150mmx150mmx150mm)吗?
解答:在RCON2™附带的常规样品架上,您可以使用的圆柱型的最大尺寸为150mmx300mm,立方体型样品的最大尺寸100mmx100mm。如果您需要测量一个150mmx150mm的立方体型样本,您可向我们订制特殊的配套样品架。

问题13: 该装置可以同时检测多少样品?
解答: 该装置目前的配置一次只能检测一个样品。然而,对一个样品的精确检测在3-5秒内就可完成, 所以该装置可以在短时间内对大批样品进行检测。

问题14: 哪些用户在使用该产品?
解答: 我们的用户名单中包括几个北美,欧洲,澳洲及中东的大学及混凝土生产商。大学中包括密歇根大学,卡尔顿大学,渥太华大学,多伦多大学,普渡大学和阿联酋大学。有关用户的反馈,请点击这里访问Giatec科技中的“邻客音(LinkedIn)”推荐。

问题15: 您在北美以外的地区有代理商或供应商?
解答: 目前我们没有在北美地区以外的供应商。我们的生产和发货都直接出自加拿大。

问题16: 有关产品的保修服务是怎样的?
解答: 在保修期内,Giatec会承担所有保养和校准的费用。保修期过后,Giatec 依然免费提供终年无休的全天候在线技术支持。

问题17: 在灵敏度,准确度和校准方面,RCON2™与哪些混凝土氯离子扩散测验相等或相关?
解答: 每一个RCON2™在发货前已经过全面校准,而且,随产品附带的验证工具盒可在用户需要时对装置的检测结果进行验证。该装置是专为需要高精度、高敏感度的检测和研究需求而设计的。点击这里在RCON2™的用户手册中查看关于RCON2™准确性、灵敏度以及其校准和验证步骤的详细信息。

问题18: Giatec的采购/销售流程是怎样的?
解答: 第1步:我们把设备及其配件的报价提供给客户。第2步:客户向我们发送订单或电子邮件,确认报价单中所列的价格。第3步:我们参照订单,加上运费,装卸费,保险等费用开具一张发票。第4步:我们收到客户的付款(预付的电汇或支票)后,当天就会发货,并附上您的收据。递送通常需要1-2周(取决于具体的地理位置)。第5步:跟进客户并保证产品已成功送达,确保客户满意。

  1. Hammond, E., & Robson, T. D. (1955). Comparison of Electrical Properties of Various Cements and Concretes. The Engineer (London), 199(5165) 78-80, and 199(5166), 114-115.
  2. Nikkanen, P. (1962). On the Electrical Properties of Concrete and Their Applications. Vaftion Tebsilliren Tutkirndaitos, Tiedotus, Sarja III, Rakennus 60, 75 pages. In Finnish with English summary.
  3. Henry, R. L. (1964). Water Vapor Transmission and Electrical Resistivity of Concrete. Final Report. U. S. Naval Civil Engineering Laboratory, Port Hueneme, California, Technical Report,R-314, 39 pages.
  4. Tobio, J. M. (1959). A Study of the Setting Process, Dielectric Behavior of Several Spanish Cements. Silicates Zrrdrcsb-iek, 24, 30-35 and 81-87.
  5. Power, T. C. (1958). Structure and Physical Properties of Hardened Portland Cement Paste. Journal of the American Ceramic Society, 41(1), 1-6; PCA Research Department, Bulletin 94.
  6. Jones, G., & Christian, S. M. (1935). The Measurement of the Conductance of Electrolytes. VI. Galvanic Polarization by Alternating Current. Journal of the American Chemical Society, 57, 272-280.
  7. Terry, E. M. (1929). ADVANCED LABORATORY PRACTICE IN ELECTRICITY AND MAGNETISM, 2nd Edition, McGraw-Hill, N.Y., 197.
  8. Fricke, H. (1931). The Electric Conductivity and Capacity of Disperse Systems. Physics, 1(2), 106-115.
  9. Frcitag, F. E. (1959). (Dyckerhoff and Widmann Kommanditgesellschaf t). Increasing the Electrical Resistance and Strength of Concrete. German Patent No. 1,064,863. In German. See abstract in English in Chemical Abstracts, 55(8), 7798d.
  10. Budnikov, P. P., & Strelkov, M.I. (1966). Some Recent Concepts on Portland Cement Hydration and Hardening. SYMPOSIUM ON STRUCTURE OF PORTI.AND CEMENT PASTE AND CONCRETE, Highway Research Board Special Report 90, Table 3, 450.
  11. Seligmann, P. (1968). Nuclear Magnetic Resonance Studies of the Water in Hardened Cement Paste. Journal of the PCA Research and Development Laboratories, 10(1), 52-65; PCA Research Department Bulletin 222.
  12. Monfore, G. E., & Verbeck, G. J. (1960). Corrosion of Prestressed Wire in Concrete. Journal of the American Concrete Institute; Proceedings, 57, 491-515; PCA Research Department Bulletin 120.
  13. Monfore, G. E., & Ost, B. (1965). Corrosion of Aluminum Conduit in Concrete. Journal of the PCA Research and Development Laboratories, 7(1), 10-22; PCA Research Department Bulletin 173.
  14. Andrade, C. (2010). Types of Models of Service Life of Reinforcement: The Case of the Resistivity. Concrete Research Letters, 1(2), 73- 80.
  15. Bertolini, L., & Polder, R. B. (1997). Concrete Resistivity and Reinforcement Corrosion Rate as a Function of Temperature and Humidity of the Environment. TNO report 97-BT-R0574, Netherland.
  16. Bryant, J. W., Weyers, R. E., & Garza, J. M. (2009). In-Place Resistivity of Bridge Deck Concrete Mixtures. ACI Materials Journal, 106(2), 114-122.
  17. Buehlef, M. G. & Thurber, W. R. (1976). A Planar Four-Probe Structure for Measuring Bulk Resistivity. IEEE Transactions on Electron Devices, 23(8), 968-974.
  18. Butefuhr, M., Fischer, C., Gehlen, C., Menzel, K., & Nurnberger, U. (2006). On-Site Investigation on Concrete Resistivity a Parameter of Durability Calculation of Reinforced Concrete Structures. Materials and Corrosion, 57(12), 932-939.
  19. Chatterji, S. (2005). A Discussion of the Papers, ''A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 1 and Part 2'' by K. Stanish, R.D. Hooton, M.D.A. Thomas. Cement and Concrete Research, 35(9), 1865-1867.
  20. Chini, A. R., Muszynski, L. C., & Hicks J. (2003). Determination of Acceptance Permeability Characteristics for Performance-Related Specifications for Portland Cement Concrete. Final report submitted to FDOT (MASc. Thesis), University of Florida, Department of Civil Engineering.
  21. Edvardsen, C. (2002). Chloride Migration Coefficients from Non-Steady-State Migration Experiments at Environment-Friendly “Green” Concrete. Retrieved from www.gronbeton.dk/artikler/Chloride%20migration%20coefficients.pdf.
  22. Elkey, W. & Sellevold E. J. (1995). Electrical Resistivity of Concrete. Published Report, No. 80, Norwegian Road Research Laboratory, Oslo, Norway, 36 pages.
  23. Ewins, A. J. (1990). Resistivity Measurements in Concrete. British Journal of NDT, 32(3), 120-126.
  24. Feliu, S., Andrade, C., Gonzalez, J. A., & Alonso, C. (1996). A New Method for In-situ Measurement of Electrical Resistivity of Reinforced Concrete. Materials and Structures, 29(6), 362-365.
  25. Ferreira, R. M., & Jalali, S. (2010). NDT Measurements for the Prediction of 28-day Compressive Strength. NDT & E International, 43(2), 55-61.
  26. Florida DOT FM 5-578. (2004). Method of Test for Concrete Resistivity as an Electrical Indicator of Its Permeability, 226.
  27. Forster, S.W. (2000). Concrete Durability-Influencing Factors and Testing. Farmington Hills, MI. Durability of Concrete, ACI Committee, Vol. 191, 1-10.
  28. Gowers, K. R. & Millard, S. G. (1999). Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique. ACI Material Journal, 96(5), 536-541.
  29. Hansson, I. L. H. & Hansson, C. M. (1953). Electrical Resistivity Measurements of Portland Cement Based Materials. Cement and Concrete Research, 13(5), 675-683.
  30. Hooton, R.D., Thomas, M.D.A., & Stanish, K., (2001). Prediction of Chloride Penetration in Concrete. Federal Highway Administration, Report No. FHWA-RD-00-142.
  31. Ishida, T., & Li, C. H. (2008). Modeling of Carbonation Based on Thermo-Hygro Physics with Strong Coupling of Mass Transport and Equilibrium in Micro-pore Structure of Concrete. Retrieved from http://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter14/isida.pdf
  32. Jianyong, L., & Pei, T. (1997). Effect of Slag and Silica Fume on Mechanical Properties of High Strength Concrete. Cement and Concrete Research, 27(6), 833-837.
  33. Kosmatka, S. H., Kerkhoff, B., Panarese, W. C., MacLeod, N. F., &McGrath, R. J. (2002). Design and Control of Concrete Mixtures, Seventh Canadian Edition. Cement Association of Canada, 227.
  34. Kessler, R. J., Power, R. G., & Paredes, M. A. (2005). Resistivity Measurements of Water Saturated Concrete as an Indicator of Permeability. Corrosion 2005, Houston, TX, 1-10.
  35. Kessler, R. J., Power, R. G., Vivas, E., Paredes, M. A., & Virmani, Y.P. (2008). Surface, Resistivity as an Indicator of Concrete Chloride Penetration Resistance. Retrieved from http://concreteresistivity.com/Surface%20Resistivity.pdf
  36. Lataste, J. F., Sirieix, C., Breysse, D., & Frappa M. (2003). Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering. NDT & E International, 36(6), 383-394.
  37. Lopez, W., & Gonzalez, J. A. (1993). Influence of the Degree of Pore Saturation on the Resistivity of Concrete and the Corrosion Rate of Steel Reinforcement. Cement and Concrete Research, 23(2), 368-376.
  38. McCarter, W. J., Starrs, G., Kandasami, S., Jones, R., & Chrisp, M. (2009). Electrode Configuration for Resistivity Measurements on Concrete. ACI Materials Journal, 106(3), 258-264.
  39. Millard, S. G., Harrison, J. A., & Edwards, A. J. (1989). Measurements of the Electrical Resistivity of Reinforced Concrete Structures for the Assessment of Corrosion Risk. British Journal of NDT, 13(11), 617-621.
  40. Millard, S. G. & Gowers, K. R. (1991). The Influence of Surface Layers upon the Measurement of Concrete Resistivity. Durability of Concrete, Second International Conference, ACI SP-126, Montreal, Canada, 1197-1220, 228.
  41. Monfore, G. E. (1968). The Electrical Resistivity of Concrete. Journal of the PCA Research Development Laboratories, 10(2), 35-48.
  42. Monkman, S. & Shao, Y. (2006). Assessing the Carbonation Behaviour of Cementitious Materials. Journal of Materials in Civil Engineering, 18(6), 768-776.
  43. Morris, W., Moreno, E. I., & Sagues, A. A. (1996). Practical Evaluation of Resistivity of Concrete in Test Cylinders Using A Wenner Array Probe. Cement and Concrete Research, 26(12), 1779-1787.
  44. Newlands, M. D., Jones, M. R., Kandasami, S., & Harrison T. A. (2008). Sensitivity of Electrodes Contact Solutions and Contact Pressure in Assessing Electrical Resistivity of Concrete. Materials and Structures, 41(4), 621-632.
  45. Nokken, M. R. & Hooton, R. D. (2006). Electrical Conductivity as a Prequalification and Quality Control. Concrete International, 28(10), 61-66.
  46. Parrott, L. J. (1994). Moisture Conditioning and Transport Properties of Concrete Test Specimens. Materials and Structures, 27(8), 460-468.
  47. Polder, R. B. (2001). Test Methods for on Site Measurement of Resistivity of Concrete – a RILEM TC-154 Technical Recommendation. Construction and Building Materials, (15)2-3, 125-131, 229.
  48. Pun, P., Kojuncdic, T., Hooton, R.D., Kojundic, T., & Fidjestol P. (1997). Influence of Silica Fume on Chloride Resistance of Concrete. Proceedings of PCI/FHWA International Symposium on High Performance Concrete, New Orleans, Louisiana, 245–256.
  49. RILEM Technical Committee. (2005). Update of the Recommendation of RILEM TC 189-NEC Non-destructive Evaluation of the Concrete Cover (Comparative Test Part I, Comparative Test of Penetrability Methods). Materials & Structures, 38(284), 895-906.
  50. Savas B. Z. (1999). Effect of Microstructure on Durability of Concrete (PhD Thesis). North Carolina State University, Department of Civil Engineering, Raleigh NC.
  51. Sengul, O. & Gjorv, O. E. (2008). Electrical Resistivity Measurements for Quality Control During Concrete Construction. ACI Materials Journal, 105(6), 541-547.
  52. Sengul, O. & Gjorv, O. E. (2009). Effect of Embedded steel on Electrical Resistivity Measurements on Concrete Structures. ACI Materials Journal, 106(1), 11-18.
  53. Scrivener, K. L., Crumbie, A. K., & Laugesen P. (2004). The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interface Science, 12(4), 411- 421, 230.
  54. Shi, C. (2004). Effect of Mixing Proportions of Concrete on its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results. Cement and Concrete Research, 34(3), 537-545.
  55. Smith, K. M., Schokker, A. J., & Tikalsky P. J. (2004). Performance of Supplementary Cementitious Materials in Concrete Resistivity and Corrosion Monitoring Evaluations. ACI Materials Journal, 101(5), 385-390.
  56. Stanish, K., Hooton, R. D., & Thomas, M. D. A. (1997). Testing the Chloride Penetration Resistance of Concrete: A Literature Review. Department of Civil Engineering University of Toronto, Ontario, Canada. FHWA Contract DTFH61-97-R 00022. Prediction of Chloride Penetration in Concrete.
  57. Stanish, K., Hooton, R. D., & Thomas, M. D. A. (2004). A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 1. Theoretical description. Cement and Concrete Research, 34(1), 43-49.
  58. Stanish, K., Hooton, R. D., & Thomas M. D. A. (2004). A Novel Method for Describing Chloride Ion Transport due to an Electrical Gradient in Concrete: Part 2. Experimental study. Cement and Concrete Research, 34(1), 51-57.